Difference between revisions of "Lamé equation"
Ulf Rehmann (talk | contribs) m (moved Lame equation to Lamé equation over redirect: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0574001.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/L057/L.0507400 Lam\Aee equation | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A linear ordinary second-order differential equation in the complex domain | A linear ordinary second-order differential equation in the complex domain | ||
− | + | $$ \tag{1 } | |
+ | |||
+ | \frac{d ^ {2} w }{d z ^ {2} } | ||
+ | = \ | ||
+ | \left [ A + B {\mathcal p} ( z) \right ] w , | ||
+ | $$ | ||
− | where | + | where $ {\mathcal p} ( z) $ |
+ | is the [[Weierstrass p-function|Weierstrass $ {\mathcal p} $- | ||
+ | function]] and $ A $ | ||
+ | and $ B $ | ||
+ | are constants. This equation was first studied by G. Lamé [[#References|[1]]]; it arises in the separation of variables for the Laplace equation in elliptic coordinates. Equation (1) is also called the Weierstrass form of the Lamé equation. By a change of the independent variable in (1) one obtains Jacobi's form of the Lamé equation: | ||
− | + | $$ | |
+ | |||
+ | \frac{d ^ {2} w }{d u ^ {2} } | ||
+ | = \ | ||
+ | \left [ C + D \mathop{\rm sn} ^ {2} u \right ] w . | ||
+ | $$ | ||
There are also numerous algebraic forms of the Lamé equation, transition to which is carried out by various transformations of the independent variable in (1), for example: | There are also numerous algebraic forms of the Lamé equation, transition to which is carried out by various transformations of the independent variable in (1), for example: | ||
− | + | $$ \tag{2 } | |
+ | |||
+ | \frac{d ^ {2} w }{d \xi ^ {2} } | ||
+ | + | ||
+ | |||
+ | \frac{1}{2} | ||
+ | |||
+ | \left ( | ||
+ | |||
+ | \frac{1}{\xi - e _ {1} } | ||
+ | + | ||
+ | |||
+ | \frac{1}{\xi - e _ {2} } | ||
+ | + | ||
+ | |||
+ | \frac{1}{\xi - e _ {3} } | ||
+ | |||
+ | \right ) | ||
+ | |||
+ | \frac{dw}{d \xi } | ||
+ | = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
− | + | \frac{A + B \xi }{4 ( \xi - e _ {1} ) ( \xi - e _ {2} ) ( \xi - e _ {3} ) } | |
+ | w . | ||
+ | $$ | ||
For practical applications the Jacobi form is the most suitable. | For practical applications the Jacobi form is the most suitable. | ||
− | Especially important is the case when in (1) (or (2)) | + | Especially important is the case when in (1) (or (2)) $ B = n ( n + 1 ) $, |
+ | where $ n $ | ||
+ | is a natural number. In this case the solutions of (1) are meromorphic in the whole plane and their properties have been thoroughly studied. Among the solutions of (2) with $ B = n ( n + 1 ) $ | ||
+ | the Lamé functions are of paramount importance (cf. [[Lamé function|Lamé function]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Lamé, "Sur les surfaces isothermes dans les corps homogènes en équilibre de température" ''J. Math. Pures Appl.'' , '''2''' (1837) pp. 147–188</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.J.O. Strutt, "Lamésche, Mathieusche und Verwandte Funktionen in Physik und Technik" ''Ergebn. Math.'' , '''1''' : 3 (1932)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''3. Automorphic functions''' , McGraw-Hill (1955)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Cambridge Univ. Press (1931)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Lamé, "Sur les surfaces isothermes dans les corps homogènes en équilibre de température" ''J. Math. Pures Appl.'' , '''2''' (1837) pp. 147–188</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.J.O. Strutt, "Lamésche, Mathieusche und Verwandte Funktionen in Physik und Technik" ''Ergebn. Math.'' , '''1''' : 3 (1932)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''3. Automorphic functions''' , McGraw-Hill (1955)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Cambridge Univ. Press (1931)</TD></TR></table> |
Revision as of 22:15, 5 June 2020
A linear ordinary second-order differential equation in the complex domain
$$ \tag{1 } \frac{d ^ {2} w }{d z ^ {2} } = \ \left [ A + B {\mathcal p} ( z) \right ] w , $$
where $ {\mathcal p} ( z) $ is the Weierstrass $ {\mathcal p} $- function and $ A $ and $ B $ are constants. This equation was first studied by G. Lamé [1]; it arises in the separation of variables for the Laplace equation in elliptic coordinates. Equation (1) is also called the Weierstrass form of the Lamé equation. By a change of the independent variable in (1) one obtains Jacobi's form of the Lamé equation:
$$ \frac{d ^ {2} w }{d u ^ {2} } = \ \left [ C + D \mathop{\rm sn} ^ {2} u \right ] w . $$
There are also numerous algebraic forms of the Lamé equation, transition to which is carried out by various transformations of the independent variable in (1), for example:
$$ \tag{2 } \frac{d ^ {2} w }{d \xi ^ {2} } + \frac{1}{2} \left ( \frac{1}{\xi - e _ {1} } + \frac{1}{\xi - e _ {2} } + \frac{1}{\xi - e _ {3} } \right ) \frac{dw}{d \xi } = $$
$$ = \ \frac{A + B \xi }{4 ( \xi - e _ {1} ) ( \xi - e _ {2} ) ( \xi - e _ {3} ) } w . $$
For practical applications the Jacobi form is the most suitable.
Especially important is the case when in (1) (or (2)) $ B = n ( n + 1 ) $, where $ n $ is a natural number. In this case the solutions of (1) are meromorphic in the whole plane and their properties have been thoroughly studied. Among the solutions of (2) with $ B = n ( n + 1 ) $ the Lamé functions are of paramount importance (cf. Lamé function).
References
[1] | G. Lamé, "Sur les surfaces isothermes dans les corps homogènes en équilibre de température" J. Math. Pures Appl. , 2 (1837) pp. 147–188 |
[2] | M.J.O. Strutt, "Lamésche, Mathieusche und Verwandte Funktionen in Physik und Technik" Ergebn. Math. , 1 : 3 (1932) |
[3] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6 |
[4] | H. Bateman (ed.) A. Erdélyi (ed.) , Higher transcendental functions , 3. Automorphic functions , McGraw-Hill (1955) |
[5] | E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Cambridge Univ. Press (1931) |
Lamé equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lam%C3%A9_equation&oldid=47571