Difference between revisions of "Lamé coefficients"
Ulf Rehmann (talk | contribs) m (moved Lame coefficients to Lamé coefficients over redirect: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0573701.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/L057/L.0507370 Lam\Aee coefficients | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''of an orthogonal curvilinear coordinate system $ u , v , w $ | ||
+ | in space'' | ||
The quantities | The quantities | ||
− | + | $$ | |
+ | L _ {u} = \ | ||
+ | \sqrt { | ||
+ | \left ( | ||
+ | \frac{\partial x }{\partial u } | ||
+ | \right ) ^ {2} + | ||
+ | \left ( | ||
+ | \frac{\partial y }{\partial u } | ||
+ | \right ) ^ {2} + | ||
+ | \left ( | ||
+ | \frac{\partial z }{\partial u } | ||
+ | \right ) ^ {2} } , | ||
+ | $$ | ||
− | + | $$ | |
+ | L _ {v} = \sqrt {\left ( | ||
+ | \frac{\partial x }{\partial v } | ||
+ | \right ) | ||
+ | ^ {2} + \left ( | ||
+ | \frac{\partial y }{\partial v } | ||
+ | \right ) ^ {2} | ||
+ | + \left ( | ||
+ | \frac{\partial z }{\partial v } | ||
+ | \right ) ^ {2} } , | ||
+ | $$ | ||
− | + | $$ | |
+ | L _ {w} = \sqrt {\left ( | ||
+ | \frac{\partial x }{\partial w } | ||
+ | \right ) | ||
+ | ^ {2} + \left ( | ||
+ | \frac{\partial y }{\partial w } | ||
+ | \right ) ^ {2} | ||
+ | + \left ( | ||
+ | \frac{\partial z }{\partial w } | ||
+ | \right ) ^ {2} } . | ||
+ | $$ | ||
− | The Lamé coefficients in the plane are defined similarly. In terms of the Lamé coefficients in the coordinates | + | The Lamé coefficients in the plane are defined similarly. In terms of the Lamé coefficients in the coordinates $ u , v , w $ |
+ | one can express the element of arc length: | ||
− | + | $$ | |
+ | d l = \ | ||
+ | \sqrt { | ||
+ | L _ {u} ^ {2} d u ^ {2} + | ||
+ | L _ {v} ^ {2} d v ^ {2} + | ||
+ | L _ {w} ^ {2} d w ^ {2} } ; | ||
+ | $$ | ||
the element of surface area: | the element of surface area: | ||
− | + | $$ | |
+ | d \sigma = \ | ||
+ | \sqrt { | ||
+ | ( L _ {u} L _ {v} d u d v ) ^ {2} + | ||
+ | ( L _ {u} L _ {w} d u d w ) ^ {2} + | ||
+ | ( L _ {v} L _ {w} d v d w ) ^ {2} } ; | ||
+ | $$ | ||
and the volume element: | and the volume element: | ||
− | + | $$ | |
+ | d V = L _ {u} L _ {v} L _ {w} d u d v d w . | ||
+ | $$ | ||
+ | |||
+ | The Lamé coefficients occur in the expressions for the operations of vector analysis in the coordinates $ u , v , w $: | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm grad} _ {u} \psi = \ | ||
+ | |||
+ | \frac{1}{L _ {u} } | ||
+ | |||
+ | \frac{\partial \psi }{\partial u } | ||
+ | ,\ \ | ||
+ | \mathop{\rm grad} _ {v} \psi = \ | ||
+ | |||
+ | \frac{1}{L _ {v} } | ||
+ | |||
+ | \frac{\partial \psi }{\partial v } | ||
+ | ,\ \ | ||
+ | \mathop{\rm grad} _ {w} \psi = \ | ||
+ | |||
+ | \frac{1}{L _ {w} } | ||
+ | |||
+ | \frac{\partial \psi }{\partial w } | ||
+ | ; | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm div} a = \ | ||
+ | |||
+ | \frac{1}{L _ {u} L _ {v} L _ {w} } | ||
+ | |||
+ | \left [ | ||
+ | |||
+ | \frac \partial {\partial u } | ||
+ | |||
+ | ( a _ {u} L _ {v} L _ {w} ) + | ||
+ | |||
+ | \frac \partial {\partial v } | ||
+ | |||
+ | ( a _ {v} L _ {u} L _ {w} ) \right . + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + \left . | ||
+ | |||
+ | \frac \partial {\partial w } | ||
+ | ( a _ {w} L _ {u} L _ {v} ) \right ] ; | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm rot} _ {u} \mathbf a = \ | ||
+ | |||
+ | \frac{1}{L _ {v} L _ {w} } | ||
+ | |||
+ | \left [ | ||
+ | |||
+ | \frac \partial {\partial v } | ||
+ | |||
+ | ( a _ {w} L _ {w} ) - | ||
+ | |||
+ | \frac \partial {\partial w } | ||
− | + | ( a _ {v} L _ {v} ) | |
+ | \right ] , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm rot} _ {v} \mathbf a = | ||
+ | \frac{1}{L _ {u} L _ {w} } | ||
+ | \left [ | ||
− | + | \frac \partial {\partial w } | |
− | + | ( a _ {u} L _ {u} ) - | |
− | + | \frac \partial {\partial u } | |
− | + | ( a _ {w} L _ {w} ) \right ] , | |
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm rot} _ {w} \mathbf a = | ||
+ | \frac{1}{L _ {u} L _ {v} } | ||
+ | \left [ | ||
− | + | \frac \partial {\partial u } | |
− | + | ( a _ {v} L _ {v} ) - | |
+ | |||
+ | \frac \partial {\partial v } | ||
+ | |||
+ | ( a _ {u} L _ {u} ) \right ] ; | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \Delta \psi = \mathop{\rm div} ( \mathop{\rm grad} \psi ) = | ||
+ | \frac{1}{L _ {u} L _ {v} L _ {w} } | ||
+ | \left [ | ||
+ | |||
+ | \frac \partial {\partial u } | ||
+ | |||
+ | \left ( | ||
+ | \frac{L _ {v} L _ {w} }{L _ {u} } | ||
+ | |||
+ | \frac{\partial \psi }{\partial u } | ||
+ | \right ) \right . + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + \left . | ||
+ | |||
+ | \frac \partial {\partial v } | ||
+ | |||
+ | \left ( | ||
+ | \frac{L _ {u} L _ {w} }{L _ {v} } | ||
+ | |||
+ | \frac{\partial \psi }{\partial v } | ||
+ | \right ) + | ||
+ | |||
+ | \frac \partial {\partial w } | ||
+ | |||
+ | \left ( | ||
+ | \frac{L _ {u} L _ {v} }{L _ {w} } | ||
+ | |||
+ | \frac{\partial \psi }{\partial w } | ||
+ | \right ) \right ] . | ||
+ | $$ | ||
For the Lamé coefficients of various orthogonal curvilinear coordinates see the corresponding articles on those coordinates. | For the Lamé coefficients of various orthogonal curvilinear coordinates see the corresponding articles on those coordinates. | ||
Line 45: | Line 212: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Lamé, "Leçons sur les coordonnées curvilignes et leurs diverses applications" , Paris (1859)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.F. Laptev, "Elements of vector calculus" , Moscow (1975) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.M. Morse, H. Feshbach, "Methods of theoretical physics" , '''1''' , McGraw-Hill (1953)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Lamé, "Leçons sur les coordonnées curvilignes et leurs diverses applications" , Paris (1859)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.F. Laptev, "Elements of vector calculus" , Moscow (1975) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.M. Morse, H. Feshbach, "Methods of theoretical physics" , '''1''' , McGraw-Hill (1953)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The name "Lamé coefficients" for the quantities | + | The name "Lamé coefficients" for the quantities $ L _ {u} $, |
+ | $ L _ {v} $, | ||
+ | $ L _ {w} $ | ||
+ | is not often used in the Western literature. Instead one finds "scale factors of an orthogonal curvilinear coordinate systemscale factors" [[#References|[3]]] or "metric coefficients of an orthogonal curvilinear coordinate systemmetric coefficients" [[#References|[a1]]]. The latter terminology of course derives from the fact that the original Riemannian metric $ d s ^ {2} $ | ||
+ | with respect to the new orthogonal curvilinear system of coordinates $ u , v , w $ | ||
+ | takes the form | ||
− | + | $$ | |
+ | d s ^ {2} = L _ {u} ^ {2} \ | ||
+ | d u ^ {2} + L _ {v} ^ {2} \ | ||
+ | d v ^ {2} + L _ {w} ^ {2} \ | ||
+ | d w ^ {2} . | ||
+ | $$ | ||
− | Thus the squares of the | + | Thus the squares of the $ L _ {u} $, |
+ | $ L _ {v} $, | ||
+ | $ L _ {w} $ | ||
+ | are the diagonal components of the standard metric tensor on $ \mathbf R ^ {3} $ | ||
+ | expressed in terms of $ u , v, w $. | ||
+ | The other components are zero because $ u , v , w $ | ||
+ | is an orthogonal curvilinear coordinate system. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.S. [I.S. Sokolnikov] Sokolnikoff, R.M. Redheffer, "Mathematics of physics and engineering" , McGraw-Hill (1958)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.F. Davis, A.D. Snider, "Introduction to vector analysis" , Allyn & Bacon (1979)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.S. [I.S. Sokolnikov] Sokolnikoff, R.M. Redheffer, "Mathematics of physics and engineering" , McGraw-Hill (1958)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H.F. Davis, A.D. Snider, "Introduction to vector analysis" , Allyn & Bacon (1979)</TD></TR></table> |
Latest revision as of 22:15, 5 June 2020
of an orthogonal curvilinear coordinate system $ u , v , w $
in space
The quantities
$$ L _ {u} = \ \sqrt { \left ( \frac{\partial x }{\partial u } \right ) ^ {2} + \left ( \frac{\partial y }{\partial u } \right ) ^ {2} + \left ( \frac{\partial z }{\partial u } \right ) ^ {2} } , $$
$$ L _ {v} = \sqrt {\left ( \frac{\partial x }{\partial v } \right ) ^ {2} + \left ( \frac{\partial y }{\partial v } \right ) ^ {2} + \left ( \frac{\partial z }{\partial v } \right ) ^ {2} } , $$
$$ L _ {w} = \sqrt {\left ( \frac{\partial x }{\partial w } \right ) ^ {2} + \left ( \frac{\partial y }{\partial w } \right ) ^ {2} + \left ( \frac{\partial z }{\partial w } \right ) ^ {2} } . $$
The Lamé coefficients in the plane are defined similarly. In terms of the Lamé coefficients in the coordinates $ u , v , w $ one can express the element of arc length:
$$ d l = \ \sqrt { L _ {u} ^ {2} d u ^ {2} + L _ {v} ^ {2} d v ^ {2} + L _ {w} ^ {2} d w ^ {2} } ; $$
the element of surface area:
$$ d \sigma = \ \sqrt { ( L _ {u} L _ {v} d u d v ) ^ {2} + ( L _ {u} L _ {w} d u d w ) ^ {2} + ( L _ {v} L _ {w} d v d w ) ^ {2} } ; $$
and the volume element:
$$ d V = L _ {u} L _ {v} L _ {w} d u d v d w . $$
The Lamé coefficients occur in the expressions for the operations of vector analysis in the coordinates $ u , v , w $:
$$ \mathop{\rm grad} _ {u} \psi = \ \frac{1}{L _ {u} } \frac{\partial \psi }{\partial u } ,\ \ \mathop{\rm grad} _ {v} \psi = \ \frac{1}{L _ {v} } \frac{\partial \psi }{\partial v } ,\ \ \mathop{\rm grad} _ {w} \psi = \ \frac{1}{L _ {w} } \frac{\partial \psi }{\partial w } ; $$
$$ \mathop{\rm div} a = \ \frac{1}{L _ {u} L _ {v} L _ {w} } \left [ \frac \partial {\partial u } ( a _ {u} L _ {v} L _ {w} ) + \frac \partial {\partial v } ( a _ {v} L _ {u} L _ {w} ) \right . + $$
$$ + \left . \frac \partial {\partial w } ( a _ {w} L _ {u} L _ {v} ) \right ] ; $$
$$ \mathop{\rm rot} _ {u} \mathbf a = \ \frac{1}{L _ {v} L _ {w} } \left [ \frac \partial {\partial v } ( a _ {w} L _ {w} ) - \frac \partial {\partial w } ( a _ {v} L _ {v} ) \right ] , $$
$$ \mathop{\rm rot} _ {v} \mathbf a = \frac{1}{L _ {u} L _ {w} } \left [ \frac \partial {\partial w } ( a _ {u} L _ {u} ) - \frac \partial {\partial u } ( a _ {w} L _ {w} ) \right ] , $$
$$ \mathop{\rm rot} _ {w} \mathbf a = \frac{1}{L _ {u} L _ {v} } \left [ \frac \partial {\partial u } ( a _ {v} L _ {v} ) - \frac \partial {\partial v } ( a _ {u} L _ {u} ) \right ] ; $$
$$ \Delta \psi = \mathop{\rm div} ( \mathop{\rm grad} \psi ) = \frac{1}{L _ {u} L _ {v} L _ {w} } \left [ \frac \partial {\partial u } \left ( \frac{L _ {v} L _ {w} }{L _ {u} } \frac{\partial \psi }{\partial u } \right ) \right . + $$
$$ + \left . \frac \partial {\partial v } \left ( \frac{L _ {u} L _ {w} }{L _ {v} } \frac{\partial \psi }{\partial v } \right ) + \frac \partial {\partial w } \left ( \frac{L _ {u} L _ {v} }{L _ {w} } \frac{\partial \psi }{\partial w } \right ) \right ] . $$
For the Lamé coefficients of various orthogonal curvilinear coordinates see the corresponding articles on those coordinates.
Lamé coefficients were introduced by G. Lamé [1].
References
[1] | G. Lamé, "Leçons sur les coordonnées curvilignes et leurs diverses applications" , Paris (1859) |
[2] | G.F. Laptev, "Elements of vector calculus" , Moscow (1975) (In Russian) |
[3] | P.M. Morse, H. Feshbach, "Methods of theoretical physics" , 1 , McGraw-Hill (1953) |
Comments
The name "Lamé coefficients" for the quantities $ L _ {u} $, $ L _ {v} $, $ L _ {w} $ is not often used in the Western literature. Instead one finds "scale factors of an orthogonal curvilinear coordinate systemscale factors" [3] or "metric coefficients of an orthogonal curvilinear coordinate systemmetric coefficients" [a1]. The latter terminology of course derives from the fact that the original Riemannian metric $ d s ^ {2} $ with respect to the new orthogonal curvilinear system of coordinates $ u , v , w $ takes the form
$$ d s ^ {2} = L _ {u} ^ {2} \ d u ^ {2} + L _ {v} ^ {2} \ d v ^ {2} + L _ {w} ^ {2} \ d w ^ {2} . $$
Thus the squares of the $ L _ {u} $, $ L _ {v} $, $ L _ {w} $ are the diagonal components of the standard metric tensor on $ \mathbf R ^ {3} $ expressed in terms of $ u , v, w $. The other components are zero because $ u , v , w $ is an orthogonal curvilinear coordinate system.
References
[a1] | I.S. [I.S. Sokolnikov] Sokolnikoff, R.M. Redheffer, "Mathematics of physics and engineering" , McGraw-Hill (1958) |
[a2] | H.F. Davis, A.D. Snider, "Introduction to vector analysis" , Allyn & Bacon (1979) |
Lamé coefficients. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lam%C3%A9_coefficients&oldid=47570