Difference between revisions of "Kähler metric"
Ulf Rehmann (talk | contribs) m (moved Kaehler metric to Kähler metric over redirect: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | k0550801.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/K055/K.0505080 K\AGahler metric, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Kählerian metric'' | ''Kählerian metric'' | ||
− | A [[Hermitian metric|Hermitian metric]] on a [[Complex manifold|complex manifold]] whose fundamental form | + | A [[Hermitian metric|Hermitian metric]] on a [[Complex manifold|complex manifold]] whose fundamental form $ \omega $ |
+ | is closed, i.e. satisfies the condition $ d \omega = 0 $. | ||
+ | Examples: the Hermitian metric $ \sum _ {k = 1 } ^ {n} | dz _ {k} | ^ {2} $ | ||
+ | in $ \mathbf C ^ {n} $; | ||
+ | the [[Fubini–Study metric|Fubini–Study metric]] on the complex projective space $ \mathbf C P ^ {n} $; | ||
+ | and the Bergman metric (see [[Bergman kernel function|Bergman kernel function]]) in a bounded domain in $ \mathbf C ^ {n} $. | ||
+ | A Kähler metric on a complex manifold induces a Kähler metric on any submanifold. Any Hermitian metric on a one-dimensional manifold is a Kähler metric. | ||
The concept was first studied by E. Kähler [[#References|[1]]]. At the same time, in algebraic geometry systematic use was made of a metric on projective algebraic varieties induced by the Fubini–Study metric (see [[#References|[5]]]). This is a Hodge metric, i.e. its fundamental form has integral periods. | The concept was first studied by E. Kähler [[#References|[1]]]. At the same time, in algebraic geometry systematic use was made of a metric on projective algebraic varieties induced by the Fubini–Study metric (see [[#References|[5]]]). This is a Hodge metric, i.e. its fundamental form has integral periods. | ||
− | A Hermitian metric | + | A Hermitian metric $ h $ |
+ | on a complex manifold is a Kähler metric if and only if it satisfies any one of the following conditions: parallel transfer along any curve (relative to the Levi-Civita connection) is a complex linear mapping, i.e. it commutes with the complex structure operator; the complex Laplacian $ \square $ | ||
+ | corresponding to the metric $ h $ | ||
+ | on differential forms satisfies the condition $ \overline \square \; = \square $, | ||
+ | i.e. the [[Laplace operator|Laplace operator]] $ \Delta $ | ||
+ | is precisely $ 2 \square $; | ||
+ | local coordinates can be introduced in a neighbourhood of any point, relative to which the matrix of $ h $ | ||
+ | coincides with the identity matrix up to second-order quantities (see [[#References|[3]]], [[#References|[6]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Kähler, "Ueber eine bemerkenswerte Hermitesche Metrik" ''Abh. Math. Sem. Univ. Hamburg'' , '''9''' (1933) pp. 173–186</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "Introduction à l'Aeetude des variétés kahlériennes" , Hermann (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Lichnerowicz, "Global theory of connections and holonomy groups" , Noordhoff (1976) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W.V.D. Hodge, "The theory and application of harmonic integrals" , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, "The real homology of Kaehler manifolds" ''Invent. Math.'' , '''29''' (1975) pp. 245–274</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Kähler, "Ueber eine bemerkenswerte Hermitesche Metrik" ''Abh. Math. Sem. Univ. Hamburg'' , '''9''' (1933) pp. 173–186</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "Introduction à l'Aeetude des variétés kahlériennes" , Hermann (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Lichnerowicz, "Global theory of connections and holonomy groups" , Noordhoff (1976) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W.V.D. Hodge, "The theory and application of harmonic integrals" , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, "The real homology of Kaehler manifolds" ''Invent. Math.'' , '''29''' (1975) pp. 245–274</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | On a complex manifold a Hermitian metric | + | On a complex manifold a Hermitian metric $ h $ |
+ | can be expressed in local coordinates by a Hermitian symmetric tensor: | ||
− | + | $$ | |
+ | h = \sum _ {\mu , \nu } | ||
+ | h _ {\mu \nu } ( z) dz _ \mu \otimes d \overline{z}\; _ \nu , | ||
+ | $$ | ||
− | where | + | where $ ( h _ {\mu \nu } ) $ |
+ | is a positive-definite Hermitian (symmetric) matrix (i.e. $ {( h _ {\mu \nu } ) } bar {} ^ {T} = ( h _ {\mu \nu } ) $ | ||
+ | and $ \overline{w}\; {} _ {0} ^ {T} ( h _ {\mu \nu } ) w _ {0} > 0 $ | ||
+ | for all $ w _ {0} \in \mathbf C ^ {n} $). | ||
+ | The associated fundamental form is then | ||
− | + | $$ | |
+ | \omega = { | ||
+ | \frac{i}{2} | ||
+ | } | ||
+ | \sum _ {\mu , \nu } | ||
+ | h _ {\mu \nu } ( z) dz _ \mu \wedge d \overline{z}\; _ \nu . | ||
+ | $$ |
Latest revision as of 22:15, 5 June 2020
Kählerian metric
A Hermitian metric on a complex manifold whose fundamental form $ \omega $ is closed, i.e. satisfies the condition $ d \omega = 0 $. Examples: the Hermitian metric $ \sum _ {k = 1 } ^ {n} | dz _ {k} | ^ {2} $ in $ \mathbf C ^ {n} $; the Fubini–Study metric on the complex projective space $ \mathbf C P ^ {n} $; and the Bergman metric (see Bergman kernel function) in a bounded domain in $ \mathbf C ^ {n} $. A Kähler metric on a complex manifold induces a Kähler metric on any submanifold. Any Hermitian metric on a one-dimensional manifold is a Kähler metric.
The concept was first studied by E. Kähler [1]. At the same time, in algebraic geometry systematic use was made of a metric on projective algebraic varieties induced by the Fubini–Study metric (see [5]). This is a Hodge metric, i.e. its fundamental form has integral periods.
A Hermitian metric $ h $ on a complex manifold is a Kähler metric if and only if it satisfies any one of the following conditions: parallel transfer along any curve (relative to the Levi-Civita connection) is a complex linear mapping, i.e. it commutes with the complex structure operator; the complex Laplacian $ \square $ corresponding to the metric $ h $ on differential forms satisfies the condition $ \overline \square \; = \square $, i.e. the Laplace operator $ \Delta $ is precisely $ 2 \square $; local coordinates can be introduced in a neighbourhood of any point, relative to which the matrix of $ h $ coincides with the identity matrix up to second-order quantities (see [3], [6]).
References
[1] | E. Kähler, "Ueber eine bemerkenswerte Hermitesche Metrik" Abh. Math. Sem. Univ. Hamburg , 9 (1933) pp. 173–186 |
[2] | A. Weil, "Introduction à l'Aeetude des variétés kahlériennes" , Hermann (1958) |
[3] | A. Lichnerowicz, "Global theory of connections and holonomy groups" , Noordhoff (1976) (Translated from French) |
[4] | R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) |
[5] | W.V.D. Hodge, "The theory and application of harmonic integrals" , Cambridge Univ. Press (1952) |
[6] | P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, "The real homology of Kaehler manifolds" Invent. Math. , 29 (1975) pp. 245–274 |
Comments
On a complex manifold a Hermitian metric $ h $ can be expressed in local coordinates by a Hermitian symmetric tensor:
$$ h = \sum _ {\mu , \nu } h _ {\mu \nu } ( z) dz _ \mu \otimes d \overline{z}\; _ \nu , $$
where $ ( h _ {\mu \nu } ) $ is a positive-definite Hermitian (symmetric) matrix (i.e. $ {( h _ {\mu \nu } ) } bar {} ^ {T} = ( h _ {\mu \nu } ) $ and $ \overline{w}\; {} _ {0} ^ {T} ( h _ {\mu \nu } ) w _ {0} > 0 $ for all $ w _ {0} \in \mathbf C ^ {n} $). The associated fundamental form is then
$$ \omega = { \frac{i}{2} } \sum _ {\mu , \nu } h _ {\mu \nu } ( z) dz _ \mu \wedge d \overline{z}\; _ \nu . $$
Kähler metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=K%C3%A4hler_metric&oldid=47541