Difference between revisions of "Kuratowski set"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | k0560501.png | ||
+ | $#A+1 = 35 n = 1 | ||
+ | $#C+1 = 35 : ~/encyclopedia/old_files/data/K056/K.0506050 Kuratowski set | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A one-dimensional set in the plane, which is $ 0 $- | |
+ | dimensional at all its points with the exception of a countable set. First constructed by C. Kuratowski [[#References|[1]]] in connection with the problem of the dimension of the subset $ N ( X) $ | ||
+ | of a given $ n $- | ||
+ | dimensional space $ X $ | ||
+ | consisting of all points $ z \in X $ | ||
+ | at which | ||
− | + | $$ | |
+ | \mathop{\rm ind} _ {z} X = \mathop{\rm ind} X = n. | ||
+ | $$ | ||
+ | |||
+ | ( $ N( X) $ | ||
+ | is called the dimensional kernel of $ X $.) | ||
+ | For a metric space $ X $ | ||
+ | with a countable base it is always the case that | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm ind} N ( X) \geq \mathop{\rm ind} X - 1, | ||
+ | $$ | ||
and the Kuratowski set shows that this result is best possible. | and the Kuratowski set shows that this result is best possible. | ||
− | The Kuratowski set is constructed as follows. Let | + | The Kuratowski set is constructed as follows. Let $ \Pi $ |
+ | be the [[Cantor set|Cantor set]] in the closed interval $ [ 0, 1] $ | ||
+ | of the horizontal axis in a Cartesian coordinate system on the plane. For each | ||
+ | |||
+ | $$ | ||
+ | x \in \Pi ,\ \ | ||
+ | x = | ||
+ | \frac{2}{3 ^ {k _ {1} } } | ||
+ | + | ||
− | < | + | \frac{2}{3 ^ {k _ {2} } } |
+ | + \dots ,\ \ | ||
+ | k _ {1} < k _ {2} < \dots , | ||
+ | $$ | ||
put | put | ||
− | + | $$ | |
+ | f ( x) = \ | ||
− | and | + | \frac{(- 1) ^ {k _ {1} } }{2} |
+ | + | ||
+ | |||
+ | \frac{(- 1) ^ {k _ {2} } }{2 ^ {2} } | ||
+ | + \dots | ||
+ | $$ | ||
+ | |||
+ | and $ f ( 0) = 0 $. | ||
+ | The graph of this function, i.e. the set $ K $ | ||
+ | of points $ ( x, f ( x)) $, | ||
+ | $ x \in \Pi $, | ||
+ | on the plane, is the Kuratowski set. If $ z $ | ||
+ | is $ ( x, f( x)) $, | ||
+ | where $ x $ | ||
+ | is the right-hand end point of an interval adjacent to $ \Pi $, | ||
+ | then $ \mathop{\rm ind} _ {z} K = 1 $, | ||
+ | but $ \mathop{\rm ind} _ {z} K = 0 $ | ||
+ | at all other points. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Kuratowski, "Une application des images de fonctions à la construction de certains ensembles singuliers" ''Mathematica'' , '''6''' (1932) pp. 120–123</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.S. Aleksandrov, B.A. Pasynkov, "Introduction to dimension theory" , Moscow (1973) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Kuratowski, "Une application des images de fonctions à la construction de certains ensembles singuliers" ''Mathematica'' , '''6''' (1932) pp. 120–123</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.S. Aleksandrov, B.A. Pasynkov, "Introduction to dimension theory" , Moscow (1973) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The Kuratowski set is not a [[Continuum|continuum]], since it is neither compact (for compact metric spaces the equality | + | The Kuratowski set is not a [[Continuum|continuum]], since it is neither compact (for compact metric spaces the equality $ \mathop{\rm ind} N( X) = \mathop{\rm ind} X $ |
+ | holds) nor connected (it is even totally disconnected, since it admits a continuous one-to-one mapping onto $ \Pi $: | ||
+ | $ \langle x, f( x)\rangle \rightarrow x $). | ||
The Kuratowski set is, however, completely metrizable. | The Kuratowski set is, however, completely metrizable. | ||
− | A separable metric space | + | A separable metric space $ X $ |
+ | such that $ \mathop{\rm ind} X = n \geq 1 $ | ||
+ | and such that the dimensional kernel of $ X $ | ||
+ | has dimension $ n- 1 $, | ||
+ | is sometimes called weakly $ n $- | ||
+ | dimensional. | ||
− | The Kuratowski set is weakly | + | The Kuratowski set is weakly $ 1 $- |
+ | dimensional. | ||
− | The first example of such a space was given by W. Sierpiński [[#References|[a2]]]. For weakly | + | The first example of such a space was given by W. Sierpiński [[#References|[a2]]]. For weakly $ n $- |
+ | dimensional spaces for $ n = 2 , 3 \dots $ | ||
+ | cf. [[#References|[a3]]], [[#References|[a4]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Engelking, "Dimension theory" , North-Holland & PWN (1978) pp. 19; 50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Sierpiński, "Sur les ensembles connexes et non-connexes" ''Fund. Math.'' , '''2''' (1921) pp. 81–95</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Mazurkiewicz, "Sur les ensembles de dimension faibles" ''Fund. Math.'' , '''13''' (1929) pp. 210–217</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> B. Tomaszewski, "On weakly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k056/k056050/k05605038.png" />-dimensional spaces" ''Fund. Math.'' , '''103''' (1979) pp. 1–8</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Engelking, "Dimension theory" , North-Holland & PWN (1978) pp. 19; 50</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Sierpiński, "Sur les ensembles connexes et non-connexes" ''Fund. Math.'' , '''2''' (1921) pp. 81–95</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Mazurkiewicz, "Sur les ensembles de dimension faibles" ''Fund. Math.'' , '''13''' (1929) pp. 210–217</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> B. Tomaszewski, "On weakly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k056/k056050/k05605038.png" />-dimensional spaces" ''Fund. Math.'' , '''103''' (1979) pp. 1–8</TD></TR></table> |
Latest revision as of 22:15, 5 June 2020
A one-dimensional set in the plane, which is $ 0 $-
dimensional at all its points with the exception of a countable set. First constructed by C. Kuratowski [1] in connection with the problem of the dimension of the subset $ N ( X) $
of a given $ n $-
dimensional space $ X $
consisting of all points $ z \in X $
at which
$$ \mathop{\rm ind} _ {z} X = \mathop{\rm ind} X = n. $$
( $ N( X) $ is called the dimensional kernel of $ X $.) For a metric space $ X $ with a countable base it is always the case that
$$ \mathop{\rm ind} N ( X) \geq \mathop{\rm ind} X - 1, $$
and the Kuratowski set shows that this result is best possible.
The Kuratowski set is constructed as follows. Let $ \Pi $ be the Cantor set in the closed interval $ [ 0, 1] $ of the horizontal axis in a Cartesian coordinate system on the plane. For each
$$ x \in \Pi ,\ \ x = \frac{2}{3 ^ {k _ {1} } } + \frac{2}{3 ^ {k _ {2} } } + \dots ,\ \ k _ {1} < k _ {2} < \dots , $$
put
$$ f ( x) = \ \frac{(- 1) ^ {k _ {1} } }{2} + \frac{(- 1) ^ {k _ {2} } }{2 ^ {2} } + \dots $$
and $ f ( 0) = 0 $. The graph of this function, i.e. the set $ K $ of points $ ( x, f ( x)) $, $ x \in \Pi $, on the plane, is the Kuratowski set. If $ z $ is $ ( x, f( x)) $, where $ x $ is the right-hand end point of an interval adjacent to $ \Pi $, then $ \mathop{\rm ind} _ {z} K = 1 $, but $ \mathop{\rm ind} _ {z} K = 0 $ at all other points.
References
[1] | C. Kuratowski, "Une application des images de fonctions à la construction de certains ensembles singuliers" Mathematica , 6 (1932) pp. 120–123 |
[2] | P.S. Aleksandrov, B.A. Pasynkov, "Introduction to dimension theory" , Moscow (1973) (In Russian) |
Comments
The Kuratowski set is not a continuum, since it is neither compact (for compact metric spaces the equality $ \mathop{\rm ind} N( X) = \mathop{\rm ind} X $ holds) nor connected (it is even totally disconnected, since it admits a continuous one-to-one mapping onto $ \Pi $: $ \langle x, f( x)\rangle \rightarrow x $).
The Kuratowski set is, however, completely metrizable.
A separable metric space $ X $ such that $ \mathop{\rm ind} X = n \geq 1 $ and such that the dimensional kernel of $ X $ has dimension $ n- 1 $, is sometimes called weakly $ n $- dimensional.
The Kuratowski set is weakly $ 1 $- dimensional.
The first example of such a space was given by W. Sierpiński [a2]. For weakly $ n $- dimensional spaces for $ n = 2 , 3 \dots $ cf. [a3], [a4].
References
[a1] | R. Engelking, "Dimension theory" , North-Holland & PWN (1978) pp. 19; 50 |
[a2] | W. Sierpiński, "Sur les ensembles connexes et non-connexes" Fund. Math. , 2 (1921) pp. 81–95 |
[a3] | S. Mazurkiewicz, "Sur les ensembles de dimension faibles" Fund. Math. , 13 (1929) pp. 210–217 |
[a4] | B. Tomaszewski, "On weakly -dimensional spaces" Fund. Math. , 103 (1979) pp. 1–8 |
Kuratowski set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kuratowski_set&oldid=47536