|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k0558101.png" /> be a [[Commutative ring|commutative ring]] with unit element and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k0558102.png" /> a sequence of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k0558103.png" />. The Koszul complex defined by these data then consists of the modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k0558104.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k0558105.png" /> is the canonical basis for the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k0558106.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k0558107.png" />, and the differentials
| + | <!-- |
| + | k0558101.png |
| + | $#A+1 = 91 n = 0 |
| + | $#C+1 = 91 : ~/encyclopedia/old_files/data/K055/K.0505810 Koszul complex |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k0558108.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k0558109.png" /></td> </tr></table>
| + | Let $ R $ |
| + | be a [[Commutative ring|commutative ring]] with unit element and $ \underline{x} = ( x _ {1} \dots x _ {r} ) $ |
| + | a sequence of elements of $ R $. |
| + | The Koszul complex defined by these data then consists of the modules $ K _ {p} ( \underline{x} ; R) = \wedge ^ {p} ( R ^ {r} ) = \oplus _ {i _ {1} < \dots < i _ {p} } R ( e _ {i _ {1} } \wedge \dots \wedge e _ {i _ {p} } ) $, |
| + | where $ \{ e _ {1} \dots e _ {r} \} $ |
| + | is the canonical basis for the $ R $- |
| + | module $ R ^ {r} $, |
| + | and the differentials |
| | | |
− | where, as usual, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581010.png" /> over a symbol means deletion. More generally one also considers the chain and cochain complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581014.png" /> consists of just two non-zero modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581016.png" /> in dimensions 0 and 1 and the only non-zero differential is multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581018.png" />. The general Koszul complex can be viewed as built up from these elementary constituents as
| + | $$ |
| + | d _ {p} : \ |
| + | K _ {p} ( \underline{x} ; R) \rightarrow \ |
| + | K _ {p - 1 } ( \underline{x} ; R), |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581019.png" /></td> </tr></table>
| + | $$ |
| + | e _ {i _ {1} } \wedge \dots \wedge e _ {i _ {p} } |
| + | \mapsto \sum _ {j = 1 } ^ { p } (- 1) ^ {j + 1 } x _ {ij} e _ {i _ {1} } \wedge \dots \wedge \widehat{e} _ {i _ {j} } \wedge \dots \wedge e _ {i _ {p} } , |
| + | $$ |
| | | |
− | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581020.png" />, define a morphism of chain complexes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581021.png" /> by taking multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581022.png" /> in dimension zero and the identity in dimension 1. Taking tensor products and iterates one thus defines morphisms of chain complexes
| + | where, as usual, a $ \widehat{ {}} $ |
| + | over a symbol means deletion. More generally one also considers the chain and cochain complexes $ K _ \star ( \underline{x} ; M) = K _ {p} ( \underline{x} ; R) \otimes _ {R} M $ |
| + | and $ K ^ \star ( \underline{x} ; M) = \mathop{\rm Hom} _ {R} ( K _ \star ( x; R); M) $. |
| + | If $ r = 1 $, |
| + | $ K _ \star ( x _ {1} ; R) $ |
| + | consists of just two non-zero modules $ R $ |
| + | and $ R $ |
| + | in dimensions 0 and 1 and the only non-zero differential is multiplication by $ x _ {1} $ |
| + | in $ R \rightarrow R $. |
| + | The general Koszul complex can be viewed as built up from these elementary constituents as |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581023.png" /></td> </tr></table>
| + | $$ |
| + | K _ \star ( \underline{x} ; R) = \ |
| + | K _ \star ( x _ {1} ; R) \otimes _ {R} \dots |
| + | \otimes _ {R} K _ \star ( x _ {r} ; R) . |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581024.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581025.png" /> denote the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581026.png" />-th cohomology group of the cochain complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581027.png" />. For a [[Noetherian ring|Noetherian ring]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581028.png" />, the local cohomology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581029.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581030.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581031.png" /> with respect to an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581033.png" /> can then be calculated as:
| + | For $ x _ {1} \in R $, |
| + | define a morphism of chain complexes $ h _ {x _ {1} } : K _ \star ( x _ {1} ; R) \rightarrow K _ \star ( x _ {1} ^ {2} ; R) $ |
| + | by taking multiplication by $ x _ {1} $ |
| + | in dimension zero and the identity in dimension 1. Taking tensor products and iterates one thus defines morphisms of chain complexes |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581034.png" /></td> </tr></table>
| + | $$ |
| + | h ^ {t} : \ |
| + | K _ \star ( \underline{x} ^ {m} ; R) \rightarrow \ |
| + | K _ \star ( \underline{x} ^ {m + t } ; R) |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581035.png" /> is a set of generators for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581036.png" />. | + | where $ \underline{x} ^ {m} = ( x _ {1} ^ {m} \dots x _ {r} ^ {m} ) $. |
| + | Let $ H ^ {i} ( \underline{x} ; M) $ |
| + | denote the $ i $- |
| + | th cohomology group of the cochain complex $ K ^ \star ( \underline{x} ; M) $. |
| + | For a [[Noetherian ring|Noetherian ring]] $ R $, |
| + | the local cohomology $ H _ {A} ^ {i} ( M) $ |
| + | of an $ R $- |
| + | module $ M $ |
| + | with respect to an ideal $ \mathfrak a $, |
| + | $ A = V ( \mathfrak a ) = \{ {\mathfrak p } : {\mathfrak p \textrm{ is a prime ideal and } \mathfrak p \supset \mathfrak a } \} $ |
| + | can then be calculated as: |
| | | |
− | An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581037.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581039.png" />-regular element (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581040.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581041.png" />-module) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581042.png" /> is not a zero-divisor on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581043.png" />, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581044.png" /> is injective. A sequence of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581045.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581047.png" />-regular sequence of elements or an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581049.png" />-sequence if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581050.png" /> is not a zero-divisor on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581051.png" />, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581052.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581053.png" />-regular. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581054.png" /> be an ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581055.png" />. Then an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581056.png" />-regular sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581057.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581059.png" />-regular sequence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581060.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581061.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581062.png" />. A maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581064.png" />-regular sequence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581065.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581066.png" />-regular sequence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581067.png" /> such that there is no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581068.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581069.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581070.png" />-regular sequence.
| + | $$ |
| + | H _ {A} ^ {i} ( M) = \ |
| + | \lim\limits _ {\begin{array}{c} |
| + | \rightarrow \\ |
| + | t |
| + | \end{array} |
| + | } H ^ {i} ( \underline{x} ^ {t} ; M), |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581071.png" /> be Noetherian, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581072.png" /> a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581073.png" />-module and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581074.png" /> an ideal. Then the following are equivalent: i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581075.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581076.png" /> and for all finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581077.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581078.png" /> with support in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581079.png" /> (cf. [[Support of a module|Support of a module]]); ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581080.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581081.png" />; and iii) there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581082.png" />-regular sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581083.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581084.png" />.
| + | where $ x _ {1} \dots x _ {r} $ |
| + | is a set of generators for $ \mathfrak a $. |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581086.png" />-depth of a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581087.png" /> is the length of the longest <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581088.png" />-regular sequence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581089.png" />. It is also called the grade of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581090.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581091.png" />. The [[Depth of a module|depth of a module]] is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581092.png" />-depth.
| + | An element $ x \in R $ |
| + | is called an $ M $- |
| + | regular element (where $ M $ |
| + | is an $ R $- |
| + | module) if $ x $ |
| + | is not a zero-divisor on $ M $, |
| + | i.e. if $ M \rightarrow ^ {x} M $ |
| + | is injective. A sequence of elements $ x _ {1} \dots x _ {r} $ |
| + | is called an $ M $- |
| + | regular sequence of elements or an $ M $- |
| + | sequence if $ x _ {i} $ |
| + | is not a zero-divisor on $ M ( x _ {1} M + \dots + x _ {i - 1 } M) $, |
| + | i.e. if $ x _ {i} $ |
| + | is $ M/( x _ {1} M + \dots + x _ {i - 1 } M) $- |
| + | regular. Let $ I $ |
| + | be an ideal of $ R $. |
| + | Then an $ M $- |
| + | regular sequence $ x _ {1} \dots x _ {r} $ |
| + | is called an $ M $- |
| + | regular sequence in $ I $ |
| + | if $ x _ {i} \in I $ |
| + | for $ i = 1 \dots r $. |
| + | A maximal $ M $- |
| + | regular sequence in $ I $ |
| + | is an $ M $- |
| + | regular sequence in $ I $ |
| + | such that there is no $ y \in I $ |
| + | for which $ x _ {1} \dots x _ {r} , y $ |
| + | is an $ M $- |
| + | regular sequence. |
| | | |
− | The homology of the Koszul complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581093.png" /> associated with an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581094.png" />-regular sequence satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581095.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581096.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055810/k05581097.png" />. This (and the above) makes Koszul complexes an important tool in commutative and homological algebra, for instance in dimension theory and the theory of multiplicities (and [[Intersection theory|intersection theory]]), cf. [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]], [[#References|[a4]]]; cf. also [[Depth of a module|Depth of a module]] and [[Cohen–Macaulay ring|Cohen–Macaulay ring]].
| + | Let $ A $ |
| + | be Noetherian, $ M $ |
| + | a finitely-generated $ A $- |
| + | module and $ I $ |
| + | an ideal. Then the following are equivalent: i) $ \mathop{\rm Ext} _ {A} ^ {i} ( N, M) = 0 $ |
| + | for all $ i = 0 \dots r $ |
| + | and for all finitely-generated $ A $- |
| + | modules $ N $ |
| + | with support in $ I $( |
| + | cf. [[Support of a module|Support of a module]]); ii) $ \mathop{\rm Ext} _ {A} ^ {i} ( A/I, M) = 0 $ |
| + | for $ i = 0 \dots r $; |
| + | and iii) there exists an $ M $- |
| + | regular sequence $ x _ {1} \dots x _ {r} $ |
| + | in $ I $. |
| + | |
| + | The $ I $- |
| + | depth of a module $ M $ |
| + | is the length of the longest $ M $- |
| + | regular sequence in $ I $. |
| + | It is also called the grade of $ I $ |
| + | on $ M $. |
| + | The [[Depth of a module|depth of a module]] is the $ A $- |
| + | depth. |
| + | |
| + | The homology of the Koszul complex $ K _ \star ( \underline{x} ; M) $ |
| + | associated with an $ M $- |
| + | regular sequence satisfies $ H _ {i} ( K _ \star ( x; M)) = 0 $ |
| + | for $ i > 0 $ |
| + | and $ H _ {0} ( K _ \star ( x; M)) = M / \sum _ {i = 1 } ^ {r} x _ {i} M $. |
| + | This (and the above) makes Koszul complexes an important tool in commutative and homological algebra, for instance in dimension theory and the theory of multiplicities (and [[Intersection theory|intersection theory]]), cf. [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]], [[#References|[a4]]]; cf. also [[Depth of a module|Depth of a module]] and [[Cohen–Macaulay ring|Cohen–Macaulay ring]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Grothendieck, "Local cohomology" , ''Lect. notes in math.'' , '''41''' , Springer (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Herzog (ed.) E. Kunz (ed.) , ''Der kanonische Modul eines Cohen–Macaulay-Rings'' , ''Lect. notes in math.'' , '''238''' , Springer (1971)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Matsumura, "Commutative algebra" , Benjamin (1970)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.G. Northcott, "Lessons on rings, modules, and multiplicities" , Cambridge Univ. Press (1968)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Grothendieck, "Local cohomology" , ''Lect. notes in math.'' , '''41''' , Springer (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Herzog (ed.) E. Kunz (ed.) , ''Der kanonische Modul eines Cohen–Macaulay-Rings'' , ''Lect. notes in math.'' , '''238''' , Springer (1971)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Matsumura, "Commutative algebra" , Benjamin (1970)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.G. Northcott, "Lessons on rings, modules, and multiplicities" , Cambridge Univ. Press (1968)</TD></TR></table> |
Let $ R $
be a commutative ring with unit element and $ \underline{x} = ( x _ {1} \dots x _ {r} ) $
a sequence of elements of $ R $.
The Koszul complex defined by these data then consists of the modules $ K _ {p} ( \underline{x} ; R) = \wedge ^ {p} ( R ^ {r} ) = \oplus _ {i _ {1} < \dots < i _ {p} } R ( e _ {i _ {1} } \wedge \dots \wedge e _ {i _ {p} } ) $,
where $ \{ e _ {1} \dots e _ {r} \} $
is the canonical basis for the $ R $-
module $ R ^ {r} $,
and the differentials
$$
d _ {p} : \
K _ {p} ( \underline{x} ; R) \rightarrow \
K _ {p - 1 } ( \underline{x} ; R),
$$
$$
e _ {i _ {1} } \wedge \dots \wedge e _ {i _ {p} }
\mapsto \sum _ {j = 1 } ^ { p } (- 1) ^ {j + 1 } x _ {ij} e _ {i _ {1} } \wedge \dots \wedge \widehat{e} _ {i _ {j} } \wedge \dots \wedge e _ {i _ {p} } ,
$$
where, as usual, a $ \widehat{ {}} $
over a symbol means deletion. More generally one also considers the chain and cochain complexes $ K _ \star ( \underline{x} ; M) = K _ {p} ( \underline{x} ; R) \otimes _ {R} M $
and $ K ^ \star ( \underline{x} ; M) = \mathop{\rm Hom} _ {R} ( K _ \star ( x; R); M) $.
If $ r = 1 $,
$ K _ \star ( x _ {1} ; R) $
consists of just two non-zero modules $ R $
and $ R $
in dimensions 0 and 1 and the only non-zero differential is multiplication by $ x _ {1} $
in $ R \rightarrow R $.
The general Koszul complex can be viewed as built up from these elementary constituents as
$$
K _ \star ( \underline{x} ; R) = \
K _ \star ( x _ {1} ; R) \otimes _ {R} \dots
\otimes _ {R} K _ \star ( x _ {r} ; R) .
$$
For $ x _ {1} \in R $,
define a morphism of chain complexes $ h _ {x _ {1} } : K _ \star ( x _ {1} ; R) \rightarrow K _ \star ( x _ {1} ^ {2} ; R) $
by taking multiplication by $ x _ {1} $
in dimension zero and the identity in dimension 1. Taking tensor products and iterates one thus defines morphisms of chain complexes
$$
h ^ {t} : \
K _ \star ( \underline{x} ^ {m} ; R) \rightarrow \
K _ \star ( \underline{x} ^ {m + t } ; R)
$$
where $ \underline{x} ^ {m} = ( x _ {1} ^ {m} \dots x _ {r} ^ {m} ) $.
Let $ H ^ {i} ( \underline{x} ; M) $
denote the $ i $-
th cohomology group of the cochain complex $ K ^ \star ( \underline{x} ; M) $.
For a Noetherian ring $ R $,
the local cohomology $ H _ {A} ^ {i} ( M) $
of an $ R $-
module $ M $
with respect to an ideal $ \mathfrak a $,
$ A = V ( \mathfrak a ) = \{ {\mathfrak p } : {\mathfrak p \textrm{ is a prime ideal and } \mathfrak p \supset \mathfrak a } \} $
can then be calculated as:
$$
H _ {A} ^ {i} ( M) = \
\lim\limits _ {\begin{array}{c}
\rightarrow \\
t
\end{array}
} H ^ {i} ( \underline{x} ^ {t} ; M),
$$
where $ x _ {1} \dots x _ {r} $
is a set of generators for $ \mathfrak a $.
An element $ x \in R $
is called an $ M $-
regular element (where $ M $
is an $ R $-
module) if $ x $
is not a zero-divisor on $ M $,
i.e. if $ M \rightarrow ^ {x} M $
is injective. A sequence of elements $ x _ {1} \dots x _ {r} $
is called an $ M $-
regular sequence of elements or an $ M $-
sequence if $ x _ {i} $
is not a zero-divisor on $ M ( x _ {1} M + \dots + x _ {i - 1 } M) $,
i.e. if $ x _ {i} $
is $ M/( x _ {1} M + \dots + x _ {i - 1 } M) $-
regular. Let $ I $
be an ideal of $ R $.
Then an $ M $-
regular sequence $ x _ {1} \dots x _ {r} $
is called an $ M $-
regular sequence in $ I $
if $ x _ {i} \in I $
for $ i = 1 \dots r $.
A maximal $ M $-
regular sequence in $ I $
is an $ M $-
regular sequence in $ I $
such that there is no $ y \in I $
for which $ x _ {1} \dots x _ {r} , y $
is an $ M $-
regular sequence.
Let $ A $
be Noetherian, $ M $
a finitely-generated $ A $-
module and $ I $
an ideal. Then the following are equivalent: i) $ \mathop{\rm Ext} _ {A} ^ {i} ( N, M) = 0 $
for all $ i = 0 \dots r $
and for all finitely-generated $ A $-
modules $ N $
with support in $ I $(
cf. Support of a module); ii) $ \mathop{\rm Ext} _ {A} ^ {i} ( A/I, M) = 0 $
for $ i = 0 \dots r $;
and iii) there exists an $ M $-
regular sequence $ x _ {1} \dots x _ {r} $
in $ I $.
The $ I $-
depth of a module $ M $
is the length of the longest $ M $-
regular sequence in $ I $.
It is also called the grade of $ I $
on $ M $.
The depth of a module is the $ A $-
depth.
The homology of the Koszul complex $ K _ \star ( \underline{x} ; M) $
associated with an $ M $-
regular sequence satisfies $ H _ {i} ( K _ \star ( x; M)) = 0 $
for $ i > 0 $
and $ H _ {0} ( K _ \star ( x; M)) = M / \sum _ {i = 1 } ^ {r} x _ {i} M $.
This (and the above) makes Koszul complexes an important tool in commutative and homological algebra, for instance in dimension theory and the theory of multiplicities (and intersection theory), cf. [a1], [a2], [a3], [a4]; cf. also Depth of a module and Cohen–Macaulay ring.
References
[a1] | A. Grothendieck, "Local cohomology" , Lect. notes in math. , 41 , Springer (1967) |
[a2] | J. Herzog (ed.) E. Kunz (ed.) , Der kanonische Modul eines Cohen–Macaulay-Rings , Lect. notes in math. , 238 , Springer (1971) |
[a3] | H. Matsumura, "Commutative algebra" , Benjamin (1970) |
[a4] | D.G. Northcott, "Lessons on rings, modules, and multiplicities" , Cambridge Univ. Press (1968) |