Difference between revisions of "Kontorovich-Lebedev-transform(2)"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | k0557801.png | ||
+ | $#A+1 = 16 n = 0 | ||
+ | $#C+1 = 16 : ~/encyclopedia/old_files/data/K055/K.0505780 Kontorovich\ANDLebedev transform | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The integral transform | The integral transform | ||
− | + | $$ | |
+ | F ( \tau ) = \ | ||
+ | \int\limits _ { 0 } ^ \infty K _ {i \tau } ( x) f ( x) d x , | ||
+ | $$ | ||
− | where | + | where $ K _ \nu $ |
+ | is the [[Macdonald function|Macdonald function]]. | ||
− | If | + | If $ f $ |
+ | is of bounded variation in a neighbourhood of a point $ x = x _ {0} > 0 $ | ||
+ | and if | ||
− | + | $$ | |
+ | f ( x) \mathop{\rm ln} x \in L \left ( 0 , | ||
+ | \frac{1}{2} | ||
+ | \right ) ,\ \ | ||
+ | f ( x) \sqrt x \in L \left ( | ||
+ | \frac{1}{2} | ||
+ | , \infty \right ) , | ||
+ | $$ | ||
then the following inversion formula holds: | then the following inversion formula holds: | ||
− | + | $$ | |
− | + | \frac{f ( x _ {0} + ) + f ( x _ {0} - ) }{2 } | |
+ | = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
− | + | \frac{2}{\pi ^ {2} x _ {0} } | |
+ | \int\limits _ { 0 } ^ \infty K _ {i \tau | ||
+ | } ( x _ {0} ) \tau \sinh \pi \tau F ( \tau ) d \tau . | ||
+ | $$ | ||
+ | |||
+ | Let $ f _ {i} $, | ||
+ | $ i = 1 , 2 $, | ||
+ | be real-valued functions with | ||
+ | |||
+ | $$ | ||
+ | f _ {i} ( x) x ^ {-} 3/4 \in L ( 0 , \infty ) ,\ \ | ||
+ | f _ {i} ( x) \in L _ {2} ( 0 , \infty ) ; | ||
+ | $$ | ||
and let | and let | ||
− | + | $$ | |
+ | F _ {i} ( \tau ) = \ | ||
+ | \int\limits _ { 0 } ^ \infty | ||
+ | |||
+ | \frac{\sqrt {2 \tau \sinh \pi \tau } } \pi | ||
+ | |||
+ | \frac{K _ {i \tau } }{\sqrt x } | ||
+ | |||
+ | f _ {i} ( x) d x . | ||
+ | $$ | ||
Then | Then | ||
− | + | $$ | |
+ | \int\limits _ { 0 } ^ \infty | ||
+ | F _ {1} ( \tau ) F _ {2} ( \tau ) d \tau = \ | ||
+ | \int\limits _ { 0 } ^ \infty | ||
+ | f _ {1} ( x ) f _ {2} ( x) d x | ||
+ | $$ | ||
(Parseval's identity). | (Parseval's identity). | ||
Line 31: | Line 85: | ||
The finite Kontorovich–Lebedev transform has the form | The finite Kontorovich–Lebedev transform has the form | ||
− | + | $$ | |
+ | F ( \tau ) = \ | ||
− | + | \frac{2 \pi \sinh \pi \tau }{\pi ^ {2} | I _ {i \alpha } ( \alpha ) | ^ {2} } | |
+ | \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \int\limits _ { 0 } ^ \alpha | ||
+ | [ K _ {i \tau } ( \alpha ) I _ {i \tau } ( x) - | ||
+ | I _ {i \tau } ( \alpha ) K _ {i \tau } ( x) ] f ( x) | ||
+ | \frac{dx}{x} | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | $ \tau > 0 $, | ||
+ | where $ I _ \nu $ | ||
+ | is the modified Bessel function (see [[#References|[3]]]). | ||
The study of such transforms was initiated by M.I. Kontorovich and N.N. Lebedev (see [[#References|[1]]], [[#References|[2]]]). | The study of such transforms was initiated by M.I. Kontorovich and N.N. Lebedev (see [[#References|[1]]], [[#References|[2]]]). | ||
Line 41: | Line 109: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.I. Kontorovich, N.N. Lebedev, "A method for the solution of problems in diffraction theory and related topics" ''Zh. Eksper. i. Toer. Fiz.'' , '''8''' : 10–11 (1938) pp. 1192–1206 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.N. Lebedev, ''Dokl. Akad. Nauk SSSR'' , '''52''' : 5 (1945) pp. 395–398</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Ya.S. Uflyand, E. Yushkova, ''Dokl. Akad. Nauk SSSR'' , '''164''' : 1 (1965) pp. 70–72</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prudnikov, "Integral transforms and operational calculus" , Pergamon (1965) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.I. Kontorovich, N.N. Lebedev, "A method for the solution of problems in diffraction theory and related topics" ''Zh. Eksper. i. Toer. Fiz.'' , '''8''' : 10–11 (1938) pp. 1192–1206 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.N. Lebedev, ''Dokl. Akad. Nauk SSSR'' , '''52''' : 5 (1945) pp. 395–398</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Ya.S. Uflyand, E. Yushkova, ''Dokl. Akad. Nauk SSSR'' , '''164''' : 1 (1965) pp. 70–72</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prudnikov, "Integral transforms and operational calculus" , Pergamon (1965) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 22:15, 5 June 2020
The integral transform
$$ F ( \tau ) = \ \int\limits _ { 0 } ^ \infty K _ {i \tau } ( x) f ( x) d x , $$
where $ K _ \nu $ is the Macdonald function.
If $ f $ is of bounded variation in a neighbourhood of a point $ x = x _ {0} > 0 $ and if
$$ f ( x) \mathop{\rm ln} x \in L \left ( 0 , \frac{1}{2} \right ) ,\ \ f ( x) \sqrt x \in L \left ( \frac{1}{2} , \infty \right ) , $$
then the following inversion formula holds:
$$ \frac{f ( x _ {0} + ) + f ( x _ {0} - ) }{2 } = $$
$$ = \ \frac{2}{\pi ^ {2} x _ {0} } \int\limits _ { 0 } ^ \infty K _ {i \tau } ( x _ {0} ) \tau \sinh \pi \tau F ( \tau ) d \tau . $$
Let $ f _ {i} $, $ i = 1 , 2 $, be real-valued functions with
$$ f _ {i} ( x) x ^ {-} 3/4 \in L ( 0 , \infty ) ,\ \ f _ {i} ( x) \in L _ {2} ( 0 , \infty ) ; $$
and let
$$ F _ {i} ( \tau ) = \ \int\limits _ { 0 } ^ \infty \frac{\sqrt {2 \tau \sinh \pi \tau } } \pi \frac{K _ {i \tau } }{\sqrt x } f _ {i} ( x) d x . $$
Then
$$ \int\limits _ { 0 } ^ \infty F _ {1} ( \tau ) F _ {2} ( \tau ) d \tau = \ \int\limits _ { 0 } ^ \infty f _ {1} ( x ) f _ {2} ( x) d x $$
(Parseval's identity).
The finite Kontorovich–Lebedev transform has the form
$$ F ( \tau ) = \ \frac{2 \pi \sinh \pi \tau }{\pi ^ {2} | I _ {i \alpha } ( \alpha ) | ^ {2} } \times $$
$$ \times \int\limits _ { 0 } ^ \alpha [ K _ {i \tau } ( \alpha ) I _ {i \tau } ( x) - I _ {i \tau } ( \alpha ) K _ {i \tau } ( x) ] f ( x) \frac{dx}{x} , $$
$ \tau > 0 $, where $ I _ \nu $ is the modified Bessel function (see [3]).
The study of such transforms was initiated by M.I. Kontorovich and N.N. Lebedev (see [1], [2]).
References
[1] | M.I. Kontorovich, N.N. Lebedev, "A method for the solution of problems in diffraction theory and related topics" Zh. Eksper. i. Toer. Fiz. , 8 : 10–11 (1938) pp. 1192–1206 (In Russian) |
[2] | N.N. Lebedev, Dokl. Akad. Nauk SSSR , 52 : 5 (1945) pp. 395–398 |
[3] | Ya.S. Uflyand, E. Yushkova, Dokl. Akad. Nauk SSSR , 164 : 1 (1965) pp. 70–72 |
[4] | V.A. Ditkin, A.P. Prudnikov, "Integral transforms and operational calculus" , Pergamon (1965) (Translated from Russian) |
Comments
A transform table for the Kontorovich–Lebedev transform can be found in [a1]. A treatment in some detail of the transform is in [a2].
References
[a1] | A. Erdelyi, W. Magnus, F. Oberhettinger, "Tables of integral transforms" , 1–2 , McGraw-Hill (1954) pp. Chapt. XII |
[a2] | I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972) pp. Chapt. 6 |
Kontorovich-Lebedev-transform(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kontorovich-Lebedev-transform(2)&oldid=47518