Difference between revisions of "Kleene-Mostowski classification"
Ulf Rehmann (talk | contribs) m (moved Kleene–Mostowski classification to Kleene-Mostowski classification: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | k0554601.png | ||
+ | $#A+1 = 50 n = 0 | ||
+ | $#C+1 = 50 : ~/encyclopedia/old_files/data/K055/K.0505460 Kleene\ANDMostowski classification | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A classification of number-theoretic predicates, introduced independently by S.C. Kleene [[#References|[1]]] and A. Mostowski [[#References|[2]]]. The class of all recursive predicates is denoted simultaneously by $ \Pi _ {0} $ | |
+ | and $ \Sigma _ {0} $. | ||
+ | For each $ k > 0 $ | ||
+ | the class $ \Sigma _ {k} $ | ||
+ | is defined as the class of all predicates expressible in the form $ \exists y R ( y , x _ {1} \dots x _ {n} ) $, | ||
+ | where $ \exists $ | ||
+ | is the existential [[Quantifier|quantifier]] and $ R( y , x _ {1} \dots x _ {n} ) $ | ||
+ | is a predicate in the class $ \Pi _ {k-} 1 $, | ||
+ | while the class $ \Pi _ {k} $ | ||
+ | is defined as the class of predicates expressible in the form $ \forall y R( y, x _ {1} \dots x _ {n} ) $, | ||
+ | where $ \forall $ | ||
+ | is the universal quantifier and the predicate $ R ( y , x _ {1} \dots x _ {n} ) $ | ||
+ | belongs to the class $ \Sigma _ {k-} 1 $. | ||
+ | In this way a double sequence of classes is obtained: | ||
− | The classification of sets defined in the language of formal arithmetic is based on the classification of predicates: A set | + | $$ |
+ | \Sigma _ {0} = \Pi _ {0} \ | ||
+ | |||
+ | \begin{array}{cccc} | ||
+ | \Sigma _ {1} &\Sigma _ {2} &\Sigma _ {3} &\dots \\ | ||
+ | \Pi _ {1} &\Pi _ {2} &\Pi _ {3} &\dots \\ | ||
+ | \end{array} | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | If a predicate belongs to $ \Sigma _ {k} $ | ||
+ | or $ \Pi _ {k} $, | ||
+ | then it belongs to the classes $ \Pi _ {j} $ | ||
+ | and $ \Sigma _ {j} $ | ||
+ | for any $ j > k $, | ||
+ | that is, $ \Sigma _ {k} \subseteq \Sigma _ {j} \cap \Pi _ {j} $ | ||
+ | and $ \Pi _ {k} \subseteq \Sigma _ {j} \cap \Pi _ {j} $ | ||
+ | for any $ j > k $. | ||
+ | If $ k > 0 $, | ||
+ | then there exist predicates in $ \Sigma _ {k} $ | ||
+ | not belonging to $ \Pi _ {k} $ | ||
+ | and also predicates in $ \Pi _ {k} $ | ||
+ | not belonging to $ \Sigma _ {k} $, | ||
+ | that is, $ \Sigma _ {k} \setminus \Pi _ {k} \neq \emptyset $ | ||
+ | and $ \Pi _ {k} \setminus \Sigma _ {k} \neq \emptyset $. | ||
+ | A predicate belongs to one of the classes $ \Sigma _ {k} $ | ||
+ | or $ \Pi _ {k} $ | ||
+ | if and only if it is expressible in the language of formal arithmetic (cf. [[Arithmetic, formal|Arithmetic, formal]]). If a predicate $ Q ( x _ {1} \dots x _ {n} ) $ | ||
+ | belongs to $ \Sigma _ {k} $( | ||
+ | or $ \Pi _ {k} $) | ||
+ | then $ \neg Q ( x _ {1} \dots x _ {n} ) $, | ||
+ | where $ \neg $ | ||
+ | is the negation sign, belongs to $ \Pi _ {k} $( | ||
+ | respectively, $ \Sigma _ {k} $). | ||
+ | A predicate $ Q ( x _ {1} \dots x _ {n} ) $ | ||
+ | is recursive (cf. [[Recursive predicate|Recursive predicate]]) if and only if $ Q ( x _ {1} \dots x _ {n} ) $ | ||
+ | and $ \neg Q ( x _ {1} \dots x _ {n} ) $ | ||
+ | belong to $ \Sigma _ {1} $, | ||
+ | i.e. $ \Sigma _ {1} \cap \Pi _ {1} = \Sigma _ {0} = \Pi _ {0} $. | ||
+ | If $ k > 0 $, | ||
+ | then $ ( \Sigma _ {k+} 1 \cap \Pi _ {k+} 1 ) \setminus ( \Sigma _ {k} \cup \Pi _ {k} ) \neq \emptyset $. | ||
+ | |||
+ | The classification of sets defined in the language of formal arithmetic is based on the classification of predicates: A set $ M $ | ||
+ | belongs to $ \Pi _ {k} $( | ||
+ | or $ \Sigma _ {k} $) | ||
+ | if the predicate "x M" belongs to this class. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.C. Kleene, "Recursive predicates and quantifiers" ''Trans. Amer. Math. Soc.'' , '''53''' (1943) pp. 41–73</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Mostowski, "On definable sets of positive integers" ''Fund. Math.'' , '''34''' (1947) pp. 81–112</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.C. Kleene, "Recursive predicates and quantifiers" ''Trans. Amer. Math. Soc.'' , '''53''' (1943) pp. 41–73</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Mostowski, "On definable sets of positive integers" ''Fund. Math.'' , '''34''' (1947) pp. 81–112</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | + | $ \Pi _ {j} \cap \Sigma _ {j} $ | |
+ | is commonly denoted by $ \Delta _ {j} $. | ||
+ | One usually speaks of the arithmetical hierarchy (rather than the Kleene–Mostowski classification). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.B. Enderton, "Elements of recursion theory" J. Barwise (ed.) , ''Handbook of mathematical logic'' , North-Holland (1977) pp. 527–566</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.B. Enderton, "Elements of recursion theory" J. Barwise (ed.) , ''Handbook of mathematical logic'' , North-Holland (1977) pp. 527–566</TD></TR></table> |
Revision as of 22:14, 5 June 2020
A classification of number-theoretic predicates, introduced independently by S.C. Kleene [1] and A. Mostowski [2]. The class of all recursive predicates is denoted simultaneously by $ \Pi _ {0} $
and $ \Sigma _ {0} $.
For each $ k > 0 $
the class $ \Sigma _ {k} $
is defined as the class of all predicates expressible in the form $ \exists y R ( y , x _ {1} \dots x _ {n} ) $,
where $ \exists $
is the existential quantifier and $ R( y , x _ {1} \dots x _ {n} ) $
is a predicate in the class $ \Pi _ {k-} 1 $,
while the class $ \Pi _ {k} $
is defined as the class of predicates expressible in the form $ \forall y R( y, x _ {1} \dots x _ {n} ) $,
where $ \forall $
is the universal quantifier and the predicate $ R ( y , x _ {1} \dots x _ {n} ) $
belongs to the class $ \Sigma _ {k-} 1 $.
In this way a double sequence of classes is obtained:
$$ \Sigma _ {0} = \Pi _ {0} \ \begin{array}{cccc} \Sigma _ {1} &\Sigma _ {2} &\Sigma _ {3} &\dots \\ \Pi _ {1} &\Pi _ {2} &\Pi _ {3} &\dots \\ \end{array} . $$
If a predicate belongs to $ \Sigma _ {k} $ or $ \Pi _ {k} $, then it belongs to the classes $ \Pi _ {j} $ and $ \Sigma _ {j} $ for any $ j > k $, that is, $ \Sigma _ {k} \subseteq \Sigma _ {j} \cap \Pi _ {j} $ and $ \Pi _ {k} \subseteq \Sigma _ {j} \cap \Pi _ {j} $ for any $ j > k $. If $ k > 0 $, then there exist predicates in $ \Sigma _ {k} $ not belonging to $ \Pi _ {k} $ and also predicates in $ \Pi _ {k} $ not belonging to $ \Sigma _ {k} $, that is, $ \Sigma _ {k} \setminus \Pi _ {k} \neq \emptyset $ and $ \Pi _ {k} \setminus \Sigma _ {k} \neq \emptyset $. A predicate belongs to one of the classes $ \Sigma _ {k} $ or $ \Pi _ {k} $ if and only if it is expressible in the language of formal arithmetic (cf. Arithmetic, formal). If a predicate $ Q ( x _ {1} \dots x _ {n} ) $ belongs to $ \Sigma _ {k} $( or $ \Pi _ {k} $) then $ \neg Q ( x _ {1} \dots x _ {n} ) $, where $ \neg $ is the negation sign, belongs to $ \Pi _ {k} $( respectively, $ \Sigma _ {k} $). A predicate $ Q ( x _ {1} \dots x _ {n} ) $ is recursive (cf. Recursive predicate) if and only if $ Q ( x _ {1} \dots x _ {n} ) $ and $ \neg Q ( x _ {1} \dots x _ {n} ) $ belong to $ \Sigma _ {1} $, i.e. $ \Sigma _ {1} \cap \Pi _ {1} = \Sigma _ {0} = \Pi _ {0} $. If $ k > 0 $, then $ ( \Sigma _ {k+} 1 \cap \Pi _ {k+} 1 ) \setminus ( \Sigma _ {k} \cup \Pi _ {k} ) \neq \emptyset $.
The classification of sets defined in the language of formal arithmetic is based on the classification of predicates: A set $ M $ belongs to $ \Pi _ {k} $( or $ \Sigma _ {k} $) if the predicate "x M" belongs to this class.
References
[1] | S.C. Kleene, "Recursive predicates and quantifiers" Trans. Amer. Math. Soc. , 53 (1943) pp. 41–73 |
[2] | A. Mostowski, "On definable sets of positive integers" Fund. Math. , 34 (1947) pp. 81–112 |
Comments
$ \Pi _ {j} \cap \Sigma _ {j} $ is commonly denoted by $ \Delta _ {j} $. One usually speaks of the arithmetical hierarchy (rather than the Kleene–Mostowski classification).
References
[a1] | H.B. Enderton, "Elements of recursion theory" J. Barwise (ed.) , Handbook of mathematical logic , North-Holland (1977) pp. 527–566 |
Kleene-Mostowski classification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kleene-Mostowski_classification&oldid=47502