Difference between revisions of "Kirchhoff formula"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | k0554401.png | ||
+ | $#A+1 = 89 n = 0 | ||
+ | $#C+1 = 89 : ~/encyclopedia/old_files/data/K055/K.0505440 Kirchhoff formula, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Kirchhoff integral'' | ''Kirchhoff integral'' | ||
The formula | The formula | ||
− | + | $$ \tag{1 } | |
+ | u ( x , t ) = | ||
+ | \frac{1}{4 \pi } | ||
+ | |||
+ | \int\limits _ \Omega | ||
+ | |||
+ | \frac{f ( y , t - r ) }{r } | ||
+ | d \Omega _ {y} + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
− | + | \frac{1}{4 \pi } | |
+ | \int\limits _ \sigma \left [ | ||
+ | \frac{1}{r} | ||
+ | |||
+ | \frac{\partial u }{\partial n } | ||
+ | - u | ||
+ | \frac{\partial ( 1 / r ) }{\partial n } | ||
+ | + | ||
+ | \frac{1}{r} | ||
+ | |||
+ | \frac{\partial u }{\partial \tau } | ||
+ | |||
+ | \frac{\partial r }{\partial n } | ||
+ | \right ] _ {\tau = t - r } d \sigma _ {y} , | ||
+ | $$ | ||
− | + | expressing the value $ u ( x , t ) $ | |
+ | of the solution of the inhomogeneous [[Wave equation|wave equation]] | ||
− | + | $$ \tag{2 } | |
+ | u _ {tt} - u _ {x _ {1} x _ {1} } - | ||
+ | u _ {x _ {2} x _ {2} } - u _ {x _ {3} x _ {3} } | ||
+ | = f ( x , t ) | ||
+ | $$ | ||
− | + | at the point $ x =( x _ {1} , x _ {2} , x _ {3} ) \in \Omega $ | |
+ | at the instant of time $ t $ | ||
+ | in terms of the retarded volume potential | ||
− | with density | + | $$ |
+ | v _ {1} ( x , t ) = \ | ||
+ | |||
+ | \frac{1}{4 \pi } | ||
+ | |||
+ | \int\limits _ \Omega | ||
+ | |||
+ | \frac{f ( y , t , r ) }{r } | ||
+ | d \Omega _ {y} ,\ \ | ||
+ | y = ( y _ {1} , y _ {2} , y _ {3} ) , | ||
+ | $$ | ||
+ | |||
+ | with density $ f $, | ||
+ | and in terms of the values of the function $ u ( y , t ) $ | ||
+ | and its first-order derivatives on the boundary $ \sigma $ | ||
+ | of the domain $ \Omega $ | ||
+ | at the instant of time $ \tau = t - r $. | ||
+ | Here $ \Omega $ | ||
+ | is a bounded domain in the three-dimensional Euclidean space with a piecewise-smooth boundary $ \sigma $, | ||
+ | $ n $ | ||
+ | is the outward normal to $ \sigma $ | ||
+ | and $ r = | x - y | $ | ||
+ | is the distance between $ x $ | ||
+ | and $ y $. | ||
Let | Let | ||
− | + | $$ | |
+ | v _ {1} ( x , t ) = \ | ||
+ | |||
+ | \frac{1}{4 \pi } | ||
+ | |||
+ | \int\limits _ \sigma | ||
+ | \frac{1}{r} | ||
+ | |||
+ | \frac{\partial \mu _ {1} ( y , t - r ) }{\partial n } | ||
+ | d \sigma _ {y} , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | v _ {2} ( x , t ) = | ||
+ | \frac{1}{4 \pi } | ||
− | + | \int\limits _ \sigma | |
+ | \frac{\partial ^ {*} }{\partial ^ {*} n } | ||
+ | |||
+ | \frac{ | ||
+ | \mu _ {2} ( y , t - r ) }{r } | ||
+ | d \sigma _ {y} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | |||
+ | \frac{\partial ^ {*} }{\partial ^ {*} n } | ||
+ | |||
+ | \frac{\mu _ {2} ( y , t - r ) }{r } | ||
+ | = \ | ||
+ | |||
+ | \frac{1}{r} | ||
+ | |||
+ | \frac{\partial r }{\partial n } | ||
+ | |||
+ | \frac{\partial \mu _ {2} ( y , t - r ) }{\partial t } | ||
+ | - \mu _ {2} ( y , t - r ) | ||
+ | |||
+ | \frac{\partial ( 1 / r ) }{\partial n } | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | The integrals $ v _ {1} ( x , t ) $ | ||
+ | and $ v _ {2} ( x , t ) $ | ||
+ | are called the retarded potentials of the single and the double layer. | ||
+ | |||
+ | The Kirchhoff formula (1) means that any twice continuously-differentiable solution $ u ( x , t ) $ | ||
+ | of equation (2) can be expressed as the sum of the retarded potentials of a single layer, a double layer and a volume potential: | ||
+ | |||
+ | $$ | ||
+ | u ( x , t ) = v _ {1} ( x , t ) + v _ {2} ( x , t ) + | ||
+ | v _ {3} ( x , t ) . | ||
+ | $$ | ||
+ | |||
+ | In the case when $ u ( x , t ) = u ( x ) $ | ||
+ | and $ f ( x , t ) = f ( x ) $ | ||
+ | do not depend on $ t $, | ||
+ | the Kirchhoff formula takes the form | ||
+ | |||
+ | $$ | ||
+ | u ( x) = | ||
+ | \frac{1}{4 \pi } | ||
+ | |||
+ | \int\limits _ \Omega | ||
+ | |||
+ | \frac{f ( y ) }{r } | ||
+ | d \Omega _ {y} + | ||
+ | |||
+ | \frac{1}{4 \pi } | ||
− | + | \int\limits _ \sigma | |
+ | \left [ | ||
− | + | \frac{1}{r} | |
− | + | \frac{\partial u ( y) }{\partial n } | |
− | + | - u ( y) | |
− | + | \frac{\partial ( 1 / r ) }{\partial n } | |
− | + | \right ] d \sigma _ {y} $$ | |
− | + | and gives a solution of the [[Poisson equation|Poisson equation]] $ \Delta u = - f( x) $. | |
− | + | The Kirchhoff formula is widely applied in the solution of a whole series of problems. For example, if $ \Omega $ | |
+ | is the ball $ | y - x | \leq t $ | ||
+ | of radius $ t $ | ||
+ | and centre $ x $, | ||
+ | then formula (1) is transformed into the relation | ||
+ | |||
+ | $$ \tag{3 } | ||
+ | u ( x , t ) = \ | ||
+ | |||
+ | \frac{1}{4 \pi } | ||
+ | |||
+ | \int\limits _ {r \leq t } | ||
+ | |||
+ | \frac{f ( y , t - r ) }{r } | ||
+ | \ | ||
+ | d y + t M _ {t} [ \psi ] + | ||
+ | |||
+ | \frac \partial {\partial t } | ||
+ | |||
+ | t M _ {t} [ \phi ] , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | M _ {t} [ \phi ] = \ | ||
+ | |||
+ | \frac{1}{4 \pi } | ||
+ | |||
+ | \int\limits _ {| y | = 1 } | ||
+ | \phi ( x + t y ) d s _ {y} $$ | ||
− | is the average value of | + | is the average value of $ \phi ( x) $ |
+ | over the surface of the sphere $ | y - x | = t $, | ||
− | + | $$ \tag{4 } | |
+ | \left . \phi ( x) = u \right | _ {t = 0 } ,\ \ | ||
+ | \left . \psi ( x ) = u _ {t} \right | _ {t = 0 } . | ||
+ | $$ | ||
− | If | + | If $ \phi ( x) $ |
+ | and $ \psi ( x) $ | ||
+ | are given functions in the ball $ | x | \leq R $, | ||
+ | with continuous partial derivatives of orders three and two, respectively, and $ f ( x , t ) $ | ||
+ | is a twice continuously-differentiable function for $ | x | < R $, | ||
+ | $ 0 \leq t \leq R - | x | $, | ||
+ | then the function $ u ( x , t ) $ | ||
+ | defined by (3) is a regular solution of the [[Cauchy problem|Cauchy problem]] (4) for equation (2) when $ | x | < R $ | ||
+ | and $ t < R - | x | $. | ||
Formula (3) is also called Kirchhoff's formula. | Formula (3) is also called Kirchhoff's formula. | ||
Line 57: | Line 225: | ||
The Kirchhoff formula in the form | The Kirchhoff formula in the form | ||
− | + | $$ | |
+ | u ( x , t ) = \ | ||
+ | t M _ {t} [ \psi ] + | ||
+ | |||
+ | \frac \partial {\partial t } | ||
+ | |||
+ | t M _ {t} [ \phi ] | ||
+ | $$ | ||
for the wave equation | for the wave equation | ||
− | + | $$ \tag{5 } | |
+ | \Delta u = u _ {tt} $$ | ||
− | is remarkable in that the [[Huygens principle|Huygens principle]] does follow from it: The solution (wave) | + | is remarkable in that the [[Huygens principle|Huygens principle]] does follow from it: The solution (wave) $ u ( x , t ) $ |
+ | of (5) at the point $ ( x , t ) $ | ||
+ | of the space of independent variables $ x _ {1} , x _ {2} , x _ {3} , t $ | ||
+ | is completely determined by the values of $ \phi $, | ||
+ | $ \partial \phi / \partial n $ | ||
+ | and $ \psi $ | ||
+ | on the sphere $ | y - x | = t $ | ||
+ | with centre at $ x $ | ||
+ | and radius $ | t | $. | ||
Consider the following equation of normal hyperbolic type: | Consider the following equation of normal hyperbolic type: | ||
− | + | $$ \tag{6 } | |
+ | \sum _ {i , j = 1 } ^ { {m } + 1 } | ||
+ | a ^ {ij} ( x) u _ {x _ {i} y _ {j} } + | ||
+ | \sum _ { j= } 1 ^ { m+ } 1 | ||
+ | b ^ {j} ( x) u _ {x _ {j} } + c ( x) u = \ | ||
+ | f ( x) | ||
+ | $$ | ||
− | with sufficiently-smooth coefficients | + | with sufficiently-smooth coefficients $ a ^ {ij} ( x) $, |
+ | $ b ^ {j} ( x) $, | ||
+ | $ c ( x) $, | ||
+ | and right-hand side $ f ( x) $ | ||
+ | in some $ ( m + 1 ) $- | ||
+ | dimensional domain $ \Omega _ {m+} 1 $, | ||
+ | that is, a form | ||
− | + | $$ | |
+ | \sum _ {i , j = 1 } ^ { {m } + 1 } | ||
+ | a ^ {ij} ( x) \xi _ {i} \xi _ {j} $$ | ||
− | that at any point | + | that at any point $ x \in \Omega _ {m+} 1 $ |
+ | can be reduced by means of a non-singular linear transformation to the form | ||
− | + | $$ | |
+ | y _ {0} ^ {2} - | ||
+ | \sum _ { i= } 1 ^ { m } | ||
+ | y _ {i} ^ {2} . | ||
+ | $$ | ||
− | The Kirchhoff formula generalizes to equation (6) in the case when the number | + | The Kirchhoff formula generalizes to equation (6) in the case when the number $ m + 1 $ |
+ | of independent variables $ x _ {1} \dots x _ {m+} 1 $ | ||
+ | is even [[#References|[4]]]. Here the essential point is the construction of the function $ \phi ^ {(} k) $ | ||
+ | that generalizes the [[Newton potential|Newton potential]] $ 1/r $ | ||
+ | to the case of equation (6). For the special case of equation (6), | ||
− | + | $$ \tag{7 } | |
+ | u _ {tt} - | ||
+ | \sum _ { i= } 1 ^ { m } | ||
+ | u _ {x _ {i} x _ {i} } = 0 ,\ \ | ||
+ | m \equiv 1 ( \mathop{\rm mod} 2 ), | ||
+ | $$ | ||
the generalized Kirchhoff formula is | the generalized Kirchhoff formula is | ||
− | + | $$ \tag{8 } | |
+ | u ( x , t ) = \gamma | ||
+ | \int\limits _ \sigma | ||
+ | \sum _ { i= } 1 ^ { k } | ||
+ | ( - 1 ) ^ {k} | ||
+ | \left \{ | ||
+ | |||
+ | \frac{\partial \phi ^ {(} k- i+ 1) }{\partial n } | ||
− | + | \left [ | |
− | + | \frac{\partial ^ {i-} 1 u }{\partial t ^ {i-} 1 } | |
− | + | \right ] \right . - | |
+ | $$ | ||
− | + | $$ | |
+ | - \left . | ||
+ | \phi ^ {(} k- i+ 1) \left [ | ||
+ | \frac{\partial ^ {i} u }{\partial | ||
+ | n \partial t ^ {i-} 1 } | ||
+ | - | ||
+ | \frac{\partial r }{\partial n } | ||
− | + | \left [ | |
+ | \frac{\partial ^ {i} u }{\partial t ^ {i} | ||
+ | } | ||
+ | \right ] \right ] \right \} d \sigma _ {x} , | ||
+ | $$ | ||
− | + | where $ \gamma $ | |
+ | is a positive number, $ \sigma $ | ||
+ | is the piecewise-smooth boundary of an $ m $- | ||
+ | dimensional bounded domain $ \Omega _ {m} $ | ||
+ | containing the point $ y $ | ||
+ | in its interior, and $ n $ | ||
+ | is the outward normal to $ \sigma $. | ||
+ | Further, | ||
+ | |||
+ | $$ | ||
+ | \phi ^ {(} i) = \gamma _ {i} r ^ {-} k- i+ 1 ,\ \ | ||
+ | \phi ^ {(} k) = r ^ {2-} m ,\ \ | ||
+ | r = | y - x | ; | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \gamma _ {i} = \textrm{ const } ,\ i = 1 \dots k - 1 ; \ k = m- | ||
+ | \frac{1}{2} | ||
+ | ; | ||
+ | $$ | ||
+ | |||
+ | and $ [ \psi ] $ | ||
+ | denotes the retarded value of $ \psi ( x , t ) $: | ||
+ | |||
+ | $$ | ||
+ | [ \psi ( x , t ) ] = \psi ( x , t - r ) . | ||
+ | $$ | ||
Formula (8) for equation (6) is sometimes called the Kirchhoff–Sobolev formula. | Formula (8) for equation (6) is sometimes called the Kirchhoff–Sobolev formula. | ||
Line 101: | Line 357: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Bitsadze, "Equations of mathematical physics" , MIR (1980) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Equations of mathematical physics" , MIR (1984) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H. Bateman, "Partial differential equations of mathematical physics" , Dover (1944)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Mathisson, "Eine neue Lösungsmethode für Differentialgleichungen von normalem hyperbolischem Typus" ''Math. Ann.'' , '''107''' (1932) pp. 400–419</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Mathisson, "Le problème de M. Hadamard rélatifs à la diffusion des ondes" ''Acta Math.'' , '''71''' : 3–4 (1939) pp. 249–282</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.G. Mikhlin, "Linear partial differential equations" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.L. Sobolev, "Sur une généralisation de la formule de Kirchhoff" ''Dokl. Akad. Nauk SSSR'' , '''1''' : 6 (1933) pp. 256–262</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S.L. Sobolev, "Applications of functional analysis in mathematical physics" , Amer. Math. Soc. (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''4''' , Addison-Wesley (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Bitsadze, "Equations of mathematical physics" , MIR (1980) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Equations of mathematical physics" , MIR (1984) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> H. Bateman, "Partial differential equations of mathematical physics" , Dover (1944)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Mathisson, "Eine neue Lösungsmethode für Differentialgleichungen von normalem hyperbolischem Typus" ''Math. Ann.'' , '''107''' (1932) pp. 400–419</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Mathisson, "Le problème de M. Hadamard rélatifs à la diffusion des ondes" ''Acta Math.'' , '''71''' : 3–4 (1939) pp. 249–282</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.G. Mikhlin, "Linear partial differential equations" , Moscow (1977) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.L. Sobolev, "Sur une généralisation de la formule de Kirchhoff" ''Dokl. Akad. Nauk SSSR'' , '''1''' : 6 (1933) pp. 256–262</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S.L. Sobolev, "Applications of functional analysis in mathematical physics" , Amer. Math. Soc. (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''4''' , Addison-Wesley (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.B. Baker, E.T. Copson, "The mathematical theory of Huygens's principle" , Clarendon Press (1950)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Schwartz, "Théorie des distributions" , '''2''' , Hermann (1951)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.R. Kirchhoff, "Vorlesungen über mathematischen Physik" ''Ann. der Physik'' , '''18''' (1883)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.B. Baker, E.T. Copson, "The mathematical theory of Huygens's principle" , Clarendon Press (1950)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L. Schwartz, "Théorie des distributions" , '''2''' , Hermann (1951)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.R. Kirchhoff, "Vorlesungen über mathematischen Physik" ''Ann. der Physik'' , '''18''' (1883)</TD></TR></table> |
Latest revision as of 22:14, 5 June 2020
Kirchhoff integral
The formula
$$ \tag{1 } u ( x , t ) = \frac{1}{4 \pi } \int\limits _ \Omega \frac{f ( y , t - r ) }{r } d \Omega _ {y} + $$
$$ + \frac{1}{4 \pi } \int\limits _ \sigma \left [ \frac{1}{r} \frac{\partial u }{\partial n } - u \frac{\partial ( 1 / r ) }{\partial n } + \frac{1}{r} \frac{\partial u }{\partial \tau } \frac{\partial r }{\partial n } \right ] _ {\tau = t - r } d \sigma _ {y} , $$
expressing the value $ u ( x , t ) $ of the solution of the inhomogeneous wave equation
$$ \tag{2 } u _ {tt} - u _ {x _ {1} x _ {1} } - u _ {x _ {2} x _ {2} } - u _ {x _ {3} x _ {3} } = f ( x , t ) $$
at the point $ x =( x _ {1} , x _ {2} , x _ {3} ) \in \Omega $ at the instant of time $ t $ in terms of the retarded volume potential
$$ v _ {1} ( x , t ) = \ \frac{1}{4 \pi } \int\limits _ \Omega \frac{f ( y , t , r ) }{r } d \Omega _ {y} ,\ \ y = ( y _ {1} , y _ {2} , y _ {3} ) , $$
with density $ f $, and in terms of the values of the function $ u ( y , t ) $ and its first-order derivatives on the boundary $ \sigma $ of the domain $ \Omega $ at the instant of time $ \tau = t - r $. Here $ \Omega $ is a bounded domain in the three-dimensional Euclidean space with a piecewise-smooth boundary $ \sigma $, $ n $ is the outward normal to $ \sigma $ and $ r = | x - y | $ is the distance between $ x $ and $ y $.
Let
$$ v _ {1} ( x , t ) = \ \frac{1}{4 \pi } \int\limits _ \sigma \frac{1}{r} \frac{\partial \mu _ {1} ( y , t - r ) }{\partial n } d \sigma _ {y} , $$
$$ v _ {2} ( x , t ) = \frac{1}{4 \pi } \int\limits _ \sigma \frac{\partial ^ {*} }{\partial ^ {*} n } \frac{ \mu _ {2} ( y , t - r ) }{r } d \sigma _ {y} , $$
where
$$ \frac{\partial ^ {*} }{\partial ^ {*} n } \frac{\mu _ {2} ( y , t - r ) }{r } = \ \frac{1}{r} \frac{\partial r }{\partial n } \frac{\partial \mu _ {2} ( y , t - r ) }{\partial t } - \mu _ {2} ( y , t - r ) \frac{\partial ( 1 / r ) }{\partial n } . $$
The integrals $ v _ {1} ( x , t ) $ and $ v _ {2} ( x , t ) $ are called the retarded potentials of the single and the double layer.
The Kirchhoff formula (1) means that any twice continuously-differentiable solution $ u ( x , t ) $ of equation (2) can be expressed as the sum of the retarded potentials of a single layer, a double layer and a volume potential:
$$ u ( x , t ) = v _ {1} ( x , t ) + v _ {2} ( x , t ) + v _ {3} ( x , t ) . $$
In the case when $ u ( x , t ) = u ( x ) $ and $ f ( x , t ) = f ( x ) $ do not depend on $ t $, the Kirchhoff formula takes the form
$$ u ( x) = \frac{1}{4 \pi } \int\limits _ \Omega \frac{f ( y ) }{r } d \Omega _ {y} + \frac{1}{4 \pi } \int\limits _ \sigma \left [ \frac{1}{r} \frac{\partial u ( y) }{\partial n } - u ( y) \frac{\partial ( 1 / r ) }{\partial n } \right ] d \sigma _ {y} $$
and gives a solution of the Poisson equation $ \Delta u = - f( x) $.
The Kirchhoff formula is widely applied in the solution of a whole series of problems. For example, if $ \Omega $ is the ball $ | y - x | \leq t $ of radius $ t $ and centre $ x $, then formula (1) is transformed into the relation
$$ \tag{3 } u ( x , t ) = \ \frac{1}{4 \pi } \int\limits _ {r \leq t } \frac{f ( y , t - r ) }{r } \ d y + t M _ {t} [ \psi ] + \frac \partial {\partial t } t M _ {t} [ \phi ] , $$
where
$$ M _ {t} [ \phi ] = \ \frac{1}{4 \pi } \int\limits _ {| y | = 1 } \phi ( x + t y ) d s _ {y} $$
is the average value of $ \phi ( x) $ over the surface of the sphere $ | y - x | = t $,
$$ \tag{4 } \left . \phi ( x) = u \right | _ {t = 0 } ,\ \ \left . \psi ( x ) = u _ {t} \right | _ {t = 0 } . $$
If $ \phi ( x) $ and $ \psi ( x) $ are given functions in the ball $ | x | \leq R $, with continuous partial derivatives of orders three and two, respectively, and $ f ( x , t ) $ is a twice continuously-differentiable function for $ | x | < R $, $ 0 \leq t \leq R - | x | $, then the function $ u ( x , t ) $ defined by (3) is a regular solution of the Cauchy problem (4) for equation (2) when $ | x | < R $ and $ t < R - | x | $.
Formula (3) is also called Kirchhoff's formula.
The Kirchhoff formula in the form
$$ u ( x , t ) = \ t M _ {t} [ \psi ] + \frac \partial {\partial t } t M _ {t} [ \phi ] $$
for the wave equation
$$ \tag{5 } \Delta u = u _ {tt} $$
is remarkable in that the Huygens principle does follow from it: The solution (wave) $ u ( x , t ) $ of (5) at the point $ ( x , t ) $ of the space of independent variables $ x _ {1} , x _ {2} , x _ {3} , t $ is completely determined by the values of $ \phi $, $ \partial \phi / \partial n $ and $ \psi $ on the sphere $ | y - x | = t $ with centre at $ x $ and radius $ | t | $.
Consider the following equation of normal hyperbolic type:
$$ \tag{6 } \sum _ {i , j = 1 } ^ { {m } + 1 } a ^ {ij} ( x) u _ {x _ {i} y _ {j} } + \sum _ { j= } 1 ^ { m+ } 1 b ^ {j} ( x) u _ {x _ {j} } + c ( x) u = \ f ( x) $$
with sufficiently-smooth coefficients $ a ^ {ij} ( x) $, $ b ^ {j} ( x) $, $ c ( x) $, and right-hand side $ f ( x) $ in some $ ( m + 1 ) $- dimensional domain $ \Omega _ {m+} 1 $, that is, a form
$$ \sum _ {i , j = 1 } ^ { {m } + 1 } a ^ {ij} ( x) \xi _ {i} \xi _ {j} $$
that at any point $ x \in \Omega _ {m+} 1 $ can be reduced by means of a non-singular linear transformation to the form
$$ y _ {0} ^ {2} - \sum _ { i= } 1 ^ { m } y _ {i} ^ {2} . $$
The Kirchhoff formula generalizes to equation (6) in the case when the number $ m + 1 $ of independent variables $ x _ {1} \dots x _ {m+} 1 $ is even [4]. Here the essential point is the construction of the function $ \phi ^ {(} k) $ that generalizes the Newton potential $ 1/r $ to the case of equation (6). For the special case of equation (6),
$$ \tag{7 } u _ {tt} - \sum _ { i= } 1 ^ { m } u _ {x _ {i} x _ {i} } = 0 ,\ \ m \equiv 1 ( \mathop{\rm mod} 2 ), $$
the generalized Kirchhoff formula is
$$ \tag{8 } u ( x , t ) = \gamma \int\limits _ \sigma \sum _ { i= } 1 ^ { k } ( - 1 ) ^ {k} \left \{ \frac{\partial \phi ^ {(} k- i+ 1) }{\partial n } \left [ \frac{\partial ^ {i-} 1 u }{\partial t ^ {i-} 1 } \right ] \right . - $$
$$ - \left . \phi ^ {(} k- i+ 1) \left [ \frac{\partial ^ {i} u }{\partial n \partial t ^ {i-} 1 } - \frac{\partial r }{\partial n } \left [ \frac{\partial ^ {i} u }{\partial t ^ {i} } \right ] \right ] \right \} d \sigma _ {x} , $$
where $ \gamma $ is a positive number, $ \sigma $ is the piecewise-smooth boundary of an $ m $- dimensional bounded domain $ \Omega _ {m} $ containing the point $ y $ in its interior, and $ n $ is the outward normal to $ \sigma $. Further,
$$ \phi ^ {(} i) = \gamma _ {i} r ^ {-} k- i+ 1 ,\ \ \phi ^ {(} k) = r ^ {2-} m ,\ \ r = | y - x | ; $$
$$ \gamma _ {i} = \textrm{ const } ,\ i = 1 \dots k - 1 ; \ k = m- \frac{1}{2} ; $$
and $ [ \psi ] $ denotes the retarded value of $ \psi ( x , t ) $:
$$ [ \psi ( x , t ) ] = \psi ( x , t - r ) . $$
Formula (8) for equation (6) is sometimes called the Kirchhoff–Sobolev formula.
References
[1] | A.V. Bitsadze, "Equations of mathematical physics" , MIR (1980) (Translated from Russian) |
[2] | V.S. Vladimirov, "Equations of mathematical physics" , MIR (1984) (Translated from Russian) |
[3] | H. Bateman, "Partial differential equations of mathematical physics" , Dover (1944) |
[4] | M. Mathisson, "Eine neue Lösungsmethode für Differentialgleichungen von normalem hyperbolischem Typus" Math. Ann. , 107 (1932) pp. 400–419 |
[5] | M. Mathisson, "Le problème de M. Hadamard rélatifs à la diffusion des ondes" Acta Math. , 71 : 3–4 (1939) pp. 249–282 |
[6] | S.G. Mikhlin, "Linear partial differential equations" , Moscow (1977) (In Russian) |
[7] | S.L. Sobolev, "Sur une généralisation de la formule de Kirchhoff" Dokl. Akad. Nauk SSSR , 1 : 6 (1933) pp. 256–262 |
[8] | S.L. Sobolev, "Applications of functional analysis in mathematical physics" , Amer. Math. Soc. (1963) (Translated from Russian) |
[9] | V.I. Smirnov, "A course of higher mathematics" , 4 , Addison-Wesley (1964) (Translated from Russian) |
[10] | A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
Comments
References
[a1] | B.B. Baker, E.T. Copson, "The mathematical theory of Huygens's principle" , Clarendon Press (1950) |
[a2] | L. Schwartz, "Théorie des distributions" , 2 , Hermann (1951) |
[a3] | G.R. Kirchhoff, "Vorlesungen über mathematischen Physik" Ann. der Physik , 18 (1883) |
Kirchhoff formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kirchhoff_formula&oldid=47500