Difference between revisions of "Khinchin inequality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | k0553701.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/K055/K.0505370 Khinchin inequality | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''for independent functions'' | ''for independent functions'' | ||
− | An estimate in | + | An estimate in $ L _ {p} $ |
+ | of the sum of independent functions (cf. [[Independent functions, system of|Independent functions, system of]]). Suppose that $ \{ f _ {k} \} $ | ||
+ | is a system of independent functions and that for some $ p > 2 $, | ||
− | < | + | $$ |
+ | \sup _ { k } \ | ||
+ | \| f _ {k} \| _ {L _ {p} } < \infty ,\ \ | ||
+ | \int\limits _ { 0 } ^ { 1 } f _ {k} ( t) dt = 0. | ||
+ | $$ | ||
Then | Then | ||
− | + | $$ | |
+ | \left \| \sum _ {k = 0 } ^ \infty c _ {k} f _ {k} \right \| _ {L _ {p} } | ||
+ | \leq \ | ||
+ | M \left ( \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} \right ) ^ {1/2} . | ||
+ | $$ | ||
If | If | ||
− | + | $$ | |
+ | \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} < \infty , | ||
+ | $$ | ||
− | + | $ r _ {k} ( t) = \mathop{\rm sign} \sin 2 ^ {k} \pi t $ | |
+ | is a Rademacher function (cf. [[Rademacher system|Rademacher system]]) and if | ||
− | + | $$ | |
+ | f ( t) = \sum _ {k = 1 } ^ \infty c _ {k} r _ {k} ( t), | ||
+ | $$ | ||
− | then for any | + | then for any $ p > 0 $, |
− | + | $$ | |
+ | A _ {p} \left ( | ||
+ | \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} | ||
+ | \right ) ^ {1/2} \leq \ | ||
+ | \left ( \int\limits _ { 0 } ^ { 1 } | f ( t) | ^ {p} \ | ||
+ | dt \right ) ^ {1/p} \leq \ | ||
+ | B _ {p} \left ( | ||
+ | \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} \right ) ^ {1/2} , | ||
+ | $$ | ||
− | where | + | where $ B _ {p} = O ( \sqrt p ) $ |
+ | as $ p \rightarrow \infty $. | ||
+ | This inequality was established by A.Ya. Khinchin in [[#References|[1]]]. The exact value of $ A _ {1} $ | ||
+ | is $ 1/2 $. | ||
− | An analogue of the Khinchin inequality is valid in Banach spaces [[#References|[4]]]. There exists a constant < | + | An analogue of the Khinchin inequality is valid in Banach spaces [[#References|[4]]]. There exists a constant $ C ( p, q) $, |
+ | $ 0 < p, q < \infty $, | ||
+ | such that for any element $ x _ {k} $ | ||
+ | in a Banach space $ E $, | ||
− | + | $$ | |
+ | \left \| \left \| | ||
+ | \sum _ {k = 1 } ^ \infty x _ {k} r _ {k} ( t) \ | ||
+ | \right \| _ {E} \right \| _ {L _ {p} } \leq \ | ||
+ | C ( p, q) \left \| \left \| | ||
+ | \sum _ {k = 1 } ^ \infty x _ {k} r _ {k} ( t) \ | ||
+ | \right \| _ {E} \right \| _ {L _ {q} } . | ||
+ | $$ | ||
One of the numerous applications of the Khinchin inequality is as follows: If | One of the numerous applications of the Khinchin inequality is as follows: If | ||
− | + | $$ | |
+ | \sum _ {k = 1 } ^ \infty a _ {k} ^ {2} + b _ {k} ^ {2} < \infty , | ||
+ | $$ | ||
− | then for almost-all choices | + | then for almost-all choices $ \pm 1 $ |
+ | the function | ||
− | + | $$ | |
+ | \sum _ {k = 1 } ^ \infty \pm | ||
+ | ( a _ {k} \cos kt + b _ {k} \sin kt) | ||
+ | $$ | ||
− | belongs to all | + | belongs to all $ L _ {p} $, |
+ | $ p < \infty $( | ||
+ | see [[#References|[5]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.Ya. Khinchin, "Ueber dyadische Brüche" ''Math. Z.'' , '''18''' (1923) pp. 109–116</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Karlin, "Orthogonal properties of independent functions" ''Trans. Amer. Math. Soc.'' , '''66''' (1949) pp. 44–64</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.F. Gaposhkin, "Lacunary series and independent functions" ''Russian Math. Surveys'' , '''21''' : 6 (1966) pp. 1–82 ''Uspekhi Mat. Nauk'' , '''21''' (1966) pp. 3–82</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Kahane, "Some random series of functions" , Cambridge Univ. Press (1985)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1''' , Cambridge Univ. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.Ya. Khinchin, "Ueber dyadische Brüche" ''Math. Z.'' , '''18''' (1923) pp. 109–116</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Karlin, "Orthogonal properties of independent functions" ''Trans. Amer. Math. Soc.'' , '''66''' (1949) pp. 44–64</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.F. Gaposhkin, "Lacunary series and independent functions" ''Russian Math. Surveys'' , '''21''' : 6 (1966) pp. 1–82 ''Uspekhi Mat. Nauk'' , '''21''' (1966) pp. 3–82</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Kahane, "Some random series of functions" , Cambridge Univ. Press (1985)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1''' , Cambridge Univ. Press (1988)</TD></TR></table> |
Latest revision as of 22:14, 5 June 2020
for independent functions
An estimate in $ L _ {p} $ of the sum of independent functions (cf. Independent functions, system of). Suppose that $ \{ f _ {k} \} $ is a system of independent functions and that for some $ p > 2 $,
$$ \sup _ { k } \ \| f _ {k} \| _ {L _ {p} } < \infty ,\ \ \int\limits _ { 0 } ^ { 1 } f _ {k} ( t) dt = 0. $$
Then
$$ \left \| \sum _ {k = 0 } ^ \infty c _ {k} f _ {k} \right \| _ {L _ {p} } \leq \ M \left ( \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} \right ) ^ {1/2} . $$
If
$$ \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} < \infty , $$
$ r _ {k} ( t) = \mathop{\rm sign} \sin 2 ^ {k} \pi t $ is a Rademacher function (cf. Rademacher system) and if
$$ f ( t) = \sum _ {k = 1 } ^ \infty c _ {k} r _ {k} ( t), $$
then for any $ p > 0 $,
$$ A _ {p} \left ( \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} \right ) ^ {1/2} \leq \ \left ( \int\limits _ { 0 } ^ { 1 } | f ( t) | ^ {p} \ dt \right ) ^ {1/p} \leq \ B _ {p} \left ( \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} \right ) ^ {1/2} , $$
where $ B _ {p} = O ( \sqrt p ) $ as $ p \rightarrow \infty $. This inequality was established by A.Ya. Khinchin in [1]. The exact value of $ A _ {1} $ is $ 1/2 $.
An analogue of the Khinchin inequality is valid in Banach spaces [4]. There exists a constant $ C ( p, q) $, $ 0 < p, q < \infty $, such that for any element $ x _ {k} $ in a Banach space $ E $,
$$ \left \| \left \| \sum _ {k = 1 } ^ \infty x _ {k} r _ {k} ( t) \ \right \| _ {E} \right \| _ {L _ {p} } \leq \ C ( p, q) \left \| \left \| \sum _ {k = 1 } ^ \infty x _ {k} r _ {k} ( t) \ \right \| _ {E} \right \| _ {L _ {q} } . $$
One of the numerous applications of the Khinchin inequality is as follows: If
$$ \sum _ {k = 1 } ^ \infty a _ {k} ^ {2} + b _ {k} ^ {2} < \infty , $$
then for almost-all choices $ \pm 1 $ the function
$$ \sum _ {k = 1 } ^ \infty \pm ( a _ {k} \cos kt + b _ {k} \sin kt) $$
belongs to all $ L _ {p} $, $ p < \infty $( see [5]).
References
[1] | A.Ya. Khinchin, "Ueber dyadische Brüche" Math. Z. , 18 (1923) pp. 109–116 |
[2] | S. Karlin, "Orthogonal properties of independent functions" Trans. Amer. Math. Soc. , 66 (1949) pp. 44–64 |
[3] | V.F. Gaposhkin, "Lacunary series and independent functions" Russian Math. Surveys , 21 : 6 (1966) pp. 1–82 Uspekhi Mat. Nauk , 21 (1966) pp. 3–82 |
[4] | J.-P. Kahane, "Some random series of functions" , Cambridge Univ. Press (1985) |
[5] | A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988) |
Khinchin inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Khinchin_inequality&oldid=47497