Namespaces
Variants
Actions

Difference between revisions of "Khinchin inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
k0553701.png
 +
$#A+1 = 24 n = 0
 +
$#C+1 = 24 : ~/encyclopedia/old_files/data/K055/K.0505370 Khinchin inequality
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''for independent functions''
 
''for independent functions''
  
An estimate in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k0553701.png" /> of the sum of independent functions (cf. [[Independent functions, system of|Independent functions, system of]]). Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k0553702.png" /> is a system of independent functions and that for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k0553703.png" />,
+
An estimate in $  L _ {p} $
 +
of the sum of independent functions (cf. [[Independent functions, system of|Independent functions, system of]]). Suppose that $  \{ f _ {k} \} $
 +
is a system of independent functions and that for some $  p > 2 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k0553704.png" /></td> </tr></table>
+
$$
 +
\sup _ { k } \
 +
\| f _ {k} \| _ {L _ {p}  }  < \infty ,\ \
 +
\int\limits _ { 0 } ^ { 1 }  f _ {k} ( t)  dt  = 0.
 +
$$
  
 
Then
 
Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k0553705.png" /></td> </tr></table>
+
$$
 +
\left \| \sum _ {k = 0 } ^  \infty  c _ {k} f _ {k} \right \| _ {L _ {p}  }
 +
\leq  \
 +
M \left ( \sum _ {k = 1 } ^  \infty  c _ {k}  ^ {2} \right )  ^ {1/2} .
 +
$$
  
 
If
 
If
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k0553706.png" /></td> </tr></table>
+
$$
 +
\sum _ {k = 1 } ^  \infty  c _ {k}  ^ {2}  < \infty ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k0553707.png" /> is a Rademacher function (cf. [[Rademacher system|Rademacher system]]) and if
+
$  r _ {k} ( t) = \mathop{\rm sign}  \sin  2  ^ {k} \pi t $
 +
is a Rademacher function (cf. [[Rademacher system|Rademacher system]]) and if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k0553708.png" /></td> </tr></table>
+
$$
 +
f ( t)  = \sum _ {k = 1 } ^  \infty  c _ {k} r _ {k} ( t),
 +
$$
  
then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k0553709.png" />,
+
then for any $  p > 0 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537010.png" /></td> </tr></table>
+
$$
 +
A _ {p} \left (
 +
\sum _ {k = 1 } ^  \infty  c _ {k}  ^ {2}
 +
\right )  ^ {1/2}  \leq  \
 +
\left ( \int\limits _ { 0 } ^ { 1 }  | f ( t) |  ^ {p} \
 +
dt \right )  ^ {1/p}  \leq  \
 +
B _ {p} \left (
 +
\sum _ {k = 1 } ^  \infty  c _ {k}  ^ {2} \right )  ^ {1/2} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537011.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537012.png" />. This inequality was established by A.Ya. Khinchin in [[#References|[1]]]. The exact value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537013.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537014.png" />.
+
where $  B _ {p} = O ( \sqrt p ) $
 +
as $  p \rightarrow \infty $.  
 +
This inequality was established by A.Ya. Khinchin in [[#References|[1]]]. The exact value of $  A _ {1} $
 +
is $  1/2 $.
  
An analogue of the Khinchin inequality is valid in Banach spaces [[#References|[4]]]. There exists a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537016.png" />, such that for any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537017.png" /> in a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537018.png" />,
+
An analogue of the Khinchin inequality is valid in Banach spaces [[#References|[4]]]. There exists a constant $  C ( p, q) $,
 +
$  0 < p, q < \infty $,  
 +
such that for any element $  x _ {k} $
 +
in a Banach space $  E $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537019.png" /></td> </tr></table>
+
$$
 +
\left \| \left \|
 +
\sum _ {k = 1 } ^  \infty  x _ {k} r _ {k} ( t) \
 +
\right \| _ {E} \right \| _ {L _ {p}  }  \leq  \
 +
C ( p, q)  \left \| \left \|
 +
\sum _ {k = 1 } ^  \infty  x _ {k} r _ {k} ( t) \
 +
\right \| _ {E} \right \| _ {L _ {q}  } .
 +
$$
  
 
One of the numerous applications of the Khinchin inequality is as follows: If
 
One of the numerous applications of the Khinchin inequality is as follows: If
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537020.png" /></td> </tr></table>
+
$$
 +
\sum _ {k = 1 } ^  \infty  a _ {k}  ^ {2} + b _ {k}  ^ {2}  < \infty ,
 +
$$
  
then for almost-all choices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537021.png" /> the function
+
then for almost-all choices $  \pm  1 $
 +
the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537022.png" /></td> </tr></table>
+
$$
 +
\sum _ {k = 1 } ^  \infty  \pm
 +
( a _ {k}  \cos  kt + b _ {k}  \sin  kt)
 +
$$
  
belongs to all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055370/k05537024.png" /> (see [[#References|[5]]]).
+
belongs to all $  L _ {p} $,  
 +
$  p < \infty $(
 +
see [[#References|[5]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.Ya. Khinchin,  "Ueber dyadische Brüche"  ''Math. Z.'' , '''18'''  (1923)  pp. 109–116</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Karlin,  "Orthogonal properties of independent functions"  ''Trans. Amer. Math. Soc.'' , '''66'''  (1949)  pp. 44–64</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.F. Gaposhkin,  "Lacunary series and independent functions"  ''Russian Math. Surveys'' , '''21''' :  6  (1966)  pp. 1–82  ''Uspekhi Mat. Nauk'' , '''21'''  (1966)  pp. 3–82</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.-P. Kahane,  "Some random series of functions" , Cambridge Univ. Press  (1985)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1''' , Cambridge Univ. Press  (1988)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.Ya. Khinchin,  "Ueber dyadische Brüche"  ''Math. Z.'' , '''18'''  (1923)  pp. 109–116</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Karlin,  "Orthogonal properties of independent functions"  ''Trans. Amer. Math. Soc.'' , '''66'''  (1949)  pp. 44–64</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.F. Gaposhkin,  "Lacunary series and independent functions"  ''Russian Math. Surveys'' , '''21''' :  6  (1966)  pp. 1–82  ''Uspekhi Mat. Nauk'' , '''21'''  (1966)  pp. 3–82</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.-P. Kahane,  "Some random series of functions" , Cambridge Univ. Press  (1985)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1''' , Cambridge Univ. Press  (1988)</TD></TR></table>

Latest revision as of 22:14, 5 June 2020


for independent functions

An estimate in $ L _ {p} $ of the sum of independent functions (cf. Independent functions, system of). Suppose that $ \{ f _ {k} \} $ is a system of independent functions and that for some $ p > 2 $,

$$ \sup _ { k } \ \| f _ {k} \| _ {L _ {p} } < \infty ,\ \ \int\limits _ { 0 } ^ { 1 } f _ {k} ( t) dt = 0. $$

Then

$$ \left \| \sum _ {k = 0 } ^ \infty c _ {k} f _ {k} \right \| _ {L _ {p} } \leq \ M \left ( \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} \right ) ^ {1/2} . $$

If

$$ \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} < \infty , $$

$ r _ {k} ( t) = \mathop{\rm sign} \sin 2 ^ {k} \pi t $ is a Rademacher function (cf. Rademacher system) and if

$$ f ( t) = \sum _ {k = 1 } ^ \infty c _ {k} r _ {k} ( t), $$

then for any $ p > 0 $,

$$ A _ {p} \left ( \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} \right ) ^ {1/2} \leq \ \left ( \int\limits _ { 0 } ^ { 1 } | f ( t) | ^ {p} \ dt \right ) ^ {1/p} \leq \ B _ {p} \left ( \sum _ {k = 1 } ^ \infty c _ {k} ^ {2} \right ) ^ {1/2} , $$

where $ B _ {p} = O ( \sqrt p ) $ as $ p \rightarrow \infty $. This inequality was established by A.Ya. Khinchin in [1]. The exact value of $ A _ {1} $ is $ 1/2 $.

An analogue of the Khinchin inequality is valid in Banach spaces [4]. There exists a constant $ C ( p, q) $, $ 0 < p, q < \infty $, such that for any element $ x _ {k} $ in a Banach space $ E $,

$$ \left \| \left \| \sum _ {k = 1 } ^ \infty x _ {k} r _ {k} ( t) \ \right \| _ {E} \right \| _ {L _ {p} } \leq \ C ( p, q) \left \| \left \| \sum _ {k = 1 } ^ \infty x _ {k} r _ {k} ( t) \ \right \| _ {E} \right \| _ {L _ {q} } . $$

One of the numerous applications of the Khinchin inequality is as follows: If

$$ \sum _ {k = 1 } ^ \infty a _ {k} ^ {2} + b _ {k} ^ {2} < \infty , $$

then for almost-all choices $ \pm 1 $ the function

$$ \sum _ {k = 1 } ^ \infty \pm ( a _ {k} \cos kt + b _ {k} \sin kt) $$

belongs to all $ L _ {p} $, $ p < \infty $( see [5]).

References

[1] A.Ya. Khinchin, "Ueber dyadische Brüche" Math. Z. , 18 (1923) pp. 109–116
[2] S. Karlin, "Orthogonal properties of independent functions" Trans. Amer. Math. Soc. , 66 (1949) pp. 44–64
[3] V.F. Gaposhkin, "Lacunary series and independent functions" Russian Math. Surveys , 21 : 6 (1966) pp. 1–82 Uspekhi Mat. Nauk , 21 (1966) pp. 3–82
[4] J.-P. Kahane, "Some random series of functions" , Cambridge Univ. Press (1985)
[5] A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988)
How to Cite This Entry:
Khinchin inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Khinchin_inequality&oldid=47497
This article was adapted from an original article by E.M. Semenov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article