Difference between revisions of "Kervaire invariant"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | k0553501.png | ||
+ | $#A+1 = 113 n = 0 | ||
+ | $#C+1 = 113 : ~/encyclopedia/old_files/data/K055/K.0505350 Kervaire invariant | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An invariant of an almost-parallelizable smooth manifold $ M $ | |
+ | of dimension $ k + 2 $, | ||
+ | defined as the [[Arf-invariant|Arf-invariant]] of the quadratic form modulo 2 on the lattice of the $ ( 2 k + 1 ) $- | ||
+ | dimensional homology space of $ M $. | ||
− | + | Let $ M $ | |
+ | be a simply-connected almost-parallelizable closed smooth manifold of dimension $ 4 k + 2 $ | ||
+ | whose homology groups $ H _ {i} ( M ; \mathbf Z ) $ | ||
+ | vanish for $ 0 < i < 4 k + 2 $, | ||
+ | except for $ V = H _ {2k+} 1 ( M ; \mathbf Z ) $. | ||
− | + | On the free Abelian group $ V $ | |
+ | there is a skew-symmetric intersection form of cycles $ \Phi ( x , y ) $, | ||
+ | $ \Phi : V \times V \rightarrow \mathbf Z $, | ||
+ | and the dimension of the integral lattice in $ V $ | ||
+ | is equal to $ 2 m $. | ||
+ | There exists on $ V $ | ||
+ | a function $ \Phi _ {0} : V \rightarrow \mathbf Z _ {2} $ | ||
+ | defined as follows: If $ x \in V $, | ||
+ | then there exists a smooth imbedding of the sphere $ S ^ {2k+} 1 $ | ||
+ | into $ M $ | ||
+ | that realizes the given element $ x $, | ||
+ | $ k \geq 1 $. | ||
+ | A tubular neighbourhood of this sphere $ S ^ {2k+} 1 $ | ||
+ | in $ M $ | ||
+ | is parallelizable, and it can be either trivial or isomorphic to a tubular neighbourhood of the diagonal in the product $ S ^ {2k+} 1 \times S ^ {2k+} 1 $. | ||
+ | Here, the tubular neighbourhood of the diagonal in $ S ^ {2k+} 1 \times S ^ {2k+} 1 $ | ||
+ | is non-trivial if and only if $ 2 k + 1 \neq 1 , 3 , 7 $( | ||
+ | see [[Hopf invariant|Hopf invariant]]). The value of $ \Phi _ {0} $ | ||
+ | is zero or one depending on whether or not the tubular neighbourhood of $ S ^ {2k+} 1 $ | ||
+ | realizing $ x $ | ||
+ | in $ M $ | ||
+ | is trivial, $ 2 k + 1 \neq 1 , 3 , 7 $. | ||
+ | The function $ \Phi _ {0} : V \rightarrow \mathbf Z _ {2} $ | ||
+ | satisfies the condition | ||
− | + | $$ | |
+ | \Phi _ {0} ( x + y ) \equiv \Phi _ {0} ( x) + \Phi _ {0} ( y) + \Phi ( x , y ) \mathop{\rm mod} 2 . | ||
+ | $$ | ||
− | + | The Arf-invariant of $ \Phi _ {0} $ | |
+ | is also called the Kervaire invariant of the manifold $ M ^ {4k+} 2 $, | ||
+ | $ 2 k + 1 \neq 1 , 3 , 7 $. | ||
− | If | + | If the Kervaire invariant of $ M ^ {4k+} 2 $ |
+ | is equal to zero, then there exists a symplectic basis $ ( e _ {i} , f _ {i} ) $ | ||
+ | for $ V $ | ||
+ | such that $ \Phi _ {0} ( e _ {i} ) = \Phi _ {0} ( f _ {i} ) = 0 $. | ||
+ | In this case $ M ^ {4k+} 2 $ | ||
+ | is a connected sum of a product of spheres | ||
− | + | $$ | |
+ | M ^ {4k+} 2 = \ | ||
+ | ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {1} \# \dots \# | ||
+ | ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {m} . | ||
+ | $$ | ||
− | + | If, on the other hand, the Kervaire invariant of $ M ^ {4k+} 2 $ | |
+ | is non-zero, then there is a symplectic basis $ ( e _ {i} , f _ {i} ) $ | ||
+ | for $ V $ | ||
+ | such that $ \Phi _ {0} ( e _ {i} ) = \Phi _ {0} ( f _ {i} ) = 0 $ | ||
+ | for $ i \neq 1 $ | ||
+ | and $ \Phi _ {0} ( e _ {1} ) = \Phi _ {0} ( f _ {1} ) = 1 $. | ||
+ | In this case the union of the tubular neighbourhoods of the two $ ( 2 k + 1 ) $- | ||
+ | dimensional spheres, imbedded in $ M ^ {4k+} 2 $ | ||
+ | with transversal intersection at a point and realizing the elements $ e _ {1} $, | ||
+ | $ f _ {1} $, | ||
+ | gives a manifold $ K ^ {4k+} 2 $. | ||
+ | It is called the Kervaire manifold (see [[Dendritic manifold|Dendritic manifold]]); its boundary $ \partial K ^ {4k+} 2 $ | ||
+ | is diffeomorphic to the standard sphere, while the manifold $ M ^ {4k+} 2 $ | ||
+ | itself can be expressed as the connected sum | ||
− | + | $$ | |
+ | M ^ {4k+} 2 = \ | ||
+ | \widehat{K} {} ^ {4k+} 2 \# ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {1} \# \dots | ||
+ | $$ | ||
− | + | $$ | |
+ | {} \dots \# ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {m-} 1 , | ||
+ | $$ | ||
− | + | where the smooth closed manifold $ \widehat{K} {} ^ {4k+} 2 $ | |
+ | is obtained from $ K ^ {4k+} 2 $ | ||
+ | by attaching a cell. | ||
− | + | If $ M ^ {4k+} 2 $, | |
+ | $ k \neq 0 , 1 , 3 $, | ||
+ | is a smooth parallelizable $ ( 2 k ) $- | ||
+ | connected manifold with a boundary that is homotopic to a sphere, then the Kervaire invariant of $ M ^ {4k+} 2 $ | ||
+ | is defined exactly as above and will have the same properties with the difference that, in the decomposition of $ M ^ {4k+} 2 $ | ||
+ | into a connected sum of simple manifolds, the component $ K _ {0} ^ {4k+} 2 $ | ||
+ | that is the Kervaire manifold has boundary $ \partial K ^ {4k+} 2 = \partial M ^ {4k+} 2 $( | ||
+ | which generally is not diffeomorphic to the standard sphere). | ||
− | + | In the cases $ k = 0 , 1 , 3 $ | |
+ | the original manifolds $ M ^ {2} $, | ||
+ | $ M ^ {6} $, | ||
+ | $ M ^ {14} $ | ||
+ | can be expressed as the connected sum $ ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) \# \dots \# ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) $( | ||
+ | if the boundary is empty) or $ ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {0} \# \dots \# ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {m-} 1 $( | ||
+ | if the boundary is non-empty), where $ ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {0} $ | ||
+ | is obtained by removing an open cell from $ S ^ {2k+} 1 \times S ^ {2k+} 1 $. | ||
− | + | However, a Kervaire invariant can be defined for the closed manifolds $ M ^ {2} $, | |
+ | $ M ^ {6} $, | ||
+ | $ M ^ {14} $( | ||
+ | see [[Pontryagin invariant|Pontryagin invariant]]; [[Kervaire–Milnor invariant|Kervaire–Milnor invariant]]) and depends in these dimensions on the choice of the framing, that is, it is an invariant of the framed surgery of the pair $ ( M ^ {4k+} 2 , f _ {r} ) $, | ||
+ | $ k = 0 , 1 , 3 $. | ||
+ | In dimensions $ k \neq 0 , 1 , 3 $ | ||
+ | the manifold $ M ^ {4k+} 2 $ | ||
+ | can be modified to the sphere $ S ^ {4k+} 2 $ | ||
+ | if and only if the pair $ ( M ^ {4k+} 2 , f _ {r} ) $ | ||
+ | has a framed surgery to the pair $ ( S ^ {4k+} 2 , f _ {r} ) $ | ||
+ | under any choice of $ f _ {r} $ | ||
+ | on the original manifold $ M ^ {4k+} 2 $( | ||
+ | see [[Surgery|Surgery]] on a manifold). | ||
− | + | The Kervaire invariant is defined for any stably-parallelizable manifold $ M ^ {4k+} 2 $ | |
+ | as an invariant of framed surgery, and any element in the stable homotopy groups of spheres can be represented either as a framed homotopy sphere or as a closed smooth framed Kervaire manifold (in this case $ m = 4 k + 2 $, | ||
+ | $ k \neq 0 , 1 , 3 $), | ||
+ | or as the framed manifold $ S ^ {2k+} 1 \times S ^ {2k+} 1 $ | ||
+ | if $ k = 0 , 1 , 3 $. | ||
− | The fundamental problem concerning the Kervaire invariant is the following: For which odd values of | + | In other words, the Kervaire invariant can be regarded as an obstruction to "carrying over" the given framing on the manifold to the sphere of the same dimension, $ k \neq 0 , 1 , 3 $. |
+ | In this sense the Kervaire invariant fulfills the same role for the values $ k = 0 , 1 , 3 $: | ||
+ | The given framing on $ S ^ {2k+} 1 \times S ^ {2k+} 1 $, | ||
+ | $ k = 0 , 1 , 3 $, | ||
+ | cannot, in general, be "carried over" to the sphere $ S ^ {4k+} 2 $, | ||
+ | $ k = 0 , 1 , 3 $, | ||
+ | by means of framed surgery. | ||
+ | |||
+ | L.S. Pontryagin was the first to construct such a framing on the manifold $ S ^ {2k+} 1 \times S ^ {2k+} 1 $ | ||
+ | for the case $ k = 0 $, | ||
+ | that is, a framing on the $ 2 $- | ||
+ | dimensional torus $ ( ( S ^ {1} \times S ^ {1} ) , f _ {r} ) $ | ||
+ | that cannot be "carried over" to $ S ^ {2} $. | ||
+ | There are also such examples of a framing on the manifolds $ S ^ {3} \times S ^ {3} $ | ||
+ | and $ S ^ {7} \times S ^ {7} $. | ||
+ | |||
+ | The fundamental problem concerning the Kervaire invariant is the following: For which odd values of $ n $ | ||
+ | does there exist a pair $ ( M ^ {2n} , f _ {r} ) $ | ||
+ | with non-zero Kervaire invariant? For $ n \neq 2 ^ {i} - 1 $ | ||
+ | the answer to this question is negative and for $ n = 2 ^ {i} - 1 $ | ||
+ | it is affirmative, where $ i = 1 $( | ||
+ | Pontryagin, see [[#References|[2]]]), $ i = 2 , 3 $( | ||
+ | M.A. Kervaire and J.W. Milnor, [[#References|[5]]], [[#References|[6]]]), $ i = 4 $( | ||
+ | W. Browder, [[#References|[3]]]), $ i = 5 , 6 $( | ||
+ | M. Barratt, M. Mahowald, A. Milgram). For other values of $ i $ | ||
+ | the answer is unknown (1989). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.P. Novikov, "Homotopy-equivalent smooth manifolds I" ''Izv. Akad. Nauk SSSR. Ser. Mat.'' , '''28''' : 2 (1964) pp. 365–474 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.S. Pontryagin, "Smooth manifolds and their applications in homology theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> W. Browder, "The Kervaire invariant of framed manifolds and its generalization" ''Ann. of Math.'' , '''90''' (1969) pp. 157–186</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W.B. Browder, "Surgery on simply-connected manifolds" , Springer (1972)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Kervaire, "A manifold which does not admit any differentiable structure" ''Comm. Math. Helv.'' , '''34''' (1960) pp. 257–270</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.A. Kervaire, J.W. Milnor, "Groups of homotopy spheres I" ''Ann. Mat.'' , '''77''' : 3 (1963) pp. 504–537</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.P. Novikov, "Homotopy-equivalent smooth manifolds I" ''Izv. Akad. Nauk SSSR. Ser. Mat.'' , '''28''' : 2 (1964) pp. 365–474 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.S. Pontryagin, "Smooth manifolds and their applications in homology theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> W. Browder, "The Kervaire invariant of framed manifolds and its generalization" ''Ann. of Math.'' , '''90''' (1969) pp. 157–186</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W.B. Browder, "Surgery on simply-connected manifolds" , Springer (1972)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Kervaire, "A manifold which does not admit any differentiable structure" ''Comm. Math. Helv.'' , '''34''' (1960) pp. 257–270</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M.A. Kervaire, J.W. Milnor, "Groups of homotopy spheres I" ''Ann. Mat.'' , '''77''' : 3 (1963) pp. 504–537</TD></TR></table> |
Revision as of 22:14, 5 June 2020
An invariant of an almost-parallelizable smooth manifold $ M $
of dimension $ k + 2 $,
defined as the Arf-invariant of the quadratic form modulo 2 on the lattice of the $ ( 2 k + 1 ) $-
dimensional homology space of $ M $.
Let $ M $ be a simply-connected almost-parallelizable closed smooth manifold of dimension $ 4 k + 2 $ whose homology groups $ H _ {i} ( M ; \mathbf Z ) $ vanish for $ 0 < i < 4 k + 2 $, except for $ V = H _ {2k+} 1 ( M ; \mathbf Z ) $.
On the free Abelian group $ V $ there is a skew-symmetric intersection form of cycles $ \Phi ( x , y ) $, $ \Phi : V \times V \rightarrow \mathbf Z $, and the dimension of the integral lattice in $ V $ is equal to $ 2 m $. There exists on $ V $ a function $ \Phi _ {0} : V \rightarrow \mathbf Z _ {2} $ defined as follows: If $ x \in V $, then there exists a smooth imbedding of the sphere $ S ^ {2k+} 1 $ into $ M $ that realizes the given element $ x $, $ k \geq 1 $. A tubular neighbourhood of this sphere $ S ^ {2k+} 1 $ in $ M $ is parallelizable, and it can be either trivial or isomorphic to a tubular neighbourhood of the diagonal in the product $ S ^ {2k+} 1 \times S ^ {2k+} 1 $. Here, the tubular neighbourhood of the diagonal in $ S ^ {2k+} 1 \times S ^ {2k+} 1 $ is non-trivial if and only if $ 2 k + 1 \neq 1 , 3 , 7 $( see Hopf invariant). The value of $ \Phi _ {0} $ is zero or one depending on whether or not the tubular neighbourhood of $ S ^ {2k+} 1 $ realizing $ x $ in $ M $ is trivial, $ 2 k + 1 \neq 1 , 3 , 7 $. The function $ \Phi _ {0} : V \rightarrow \mathbf Z _ {2} $ satisfies the condition
$$ \Phi _ {0} ( x + y ) \equiv \Phi _ {0} ( x) + \Phi _ {0} ( y) + \Phi ( x , y ) \mathop{\rm mod} 2 . $$
The Arf-invariant of $ \Phi _ {0} $ is also called the Kervaire invariant of the manifold $ M ^ {4k+} 2 $, $ 2 k + 1 \neq 1 , 3 , 7 $.
If the Kervaire invariant of $ M ^ {4k+} 2 $ is equal to zero, then there exists a symplectic basis $ ( e _ {i} , f _ {i} ) $ for $ V $ such that $ \Phi _ {0} ( e _ {i} ) = \Phi _ {0} ( f _ {i} ) = 0 $. In this case $ M ^ {4k+} 2 $ is a connected sum of a product of spheres
$$ M ^ {4k+} 2 = \ ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {1} \# \dots \# ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {m} . $$
If, on the other hand, the Kervaire invariant of $ M ^ {4k+} 2 $ is non-zero, then there is a symplectic basis $ ( e _ {i} , f _ {i} ) $ for $ V $ such that $ \Phi _ {0} ( e _ {i} ) = \Phi _ {0} ( f _ {i} ) = 0 $ for $ i \neq 1 $ and $ \Phi _ {0} ( e _ {1} ) = \Phi _ {0} ( f _ {1} ) = 1 $. In this case the union of the tubular neighbourhoods of the two $ ( 2 k + 1 ) $- dimensional spheres, imbedded in $ M ^ {4k+} 2 $ with transversal intersection at a point and realizing the elements $ e _ {1} $, $ f _ {1} $, gives a manifold $ K ^ {4k+} 2 $. It is called the Kervaire manifold (see Dendritic manifold); its boundary $ \partial K ^ {4k+} 2 $ is diffeomorphic to the standard sphere, while the manifold $ M ^ {4k+} 2 $ itself can be expressed as the connected sum
$$ M ^ {4k+} 2 = \ \widehat{K} {} ^ {4k+} 2 \# ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {1} \# \dots $$
$$ {} \dots \# ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {m-} 1 , $$
where the smooth closed manifold $ \widehat{K} {} ^ {4k+} 2 $ is obtained from $ K ^ {4k+} 2 $ by attaching a cell.
If $ M ^ {4k+} 2 $, $ k \neq 0 , 1 , 3 $, is a smooth parallelizable $ ( 2 k ) $- connected manifold with a boundary that is homotopic to a sphere, then the Kervaire invariant of $ M ^ {4k+} 2 $ is defined exactly as above and will have the same properties with the difference that, in the decomposition of $ M ^ {4k+} 2 $ into a connected sum of simple manifolds, the component $ K _ {0} ^ {4k+} 2 $ that is the Kervaire manifold has boundary $ \partial K ^ {4k+} 2 = \partial M ^ {4k+} 2 $( which generally is not diffeomorphic to the standard sphere).
In the cases $ k = 0 , 1 , 3 $ the original manifolds $ M ^ {2} $, $ M ^ {6} $, $ M ^ {14} $ can be expressed as the connected sum $ ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) \# \dots \# ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) $( if the boundary is empty) or $ ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {0} \# \dots \# ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {m-} 1 $( if the boundary is non-empty), where $ ( S ^ {2k+} 1 \times S ^ {2k+} 1 ) _ {0} $ is obtained by removing an open cell from $ S ^ {2k+} 1 \times S ^ {2k+} 1 $.
However, a Kervaire invariant can be defined for the closed manifolds $ M ^ {2} $, $ M ^ {6} $, $ M ^ {14} $( see Pontryagin invariant; Kervaire–Milnor invariant) and depends in these dimensions on the choice of the framing, that is, it is an invariant of the framed surgery of the pair $ ( M ^ {4k+} 2 , f _ {r} ) $, $ k = 0 , 1 , 3 $. In dimensions $ k \neq 0 , 1 , 3 $ the manifold $ M ^ {4k+} 2 $ can be modified to the sphere $ S ^ {4k+} 2 $ if and only if the pair $ ( M ^ {4k+} 2 , f _ {r} ) $ has a framed surgery to the pair $ ( S ^ {4k+} 2 , f _ {r} ) $ under any choice of $ f _ {r} $ on the original manifold $ M ^ {4k+} 2 $( see Surgery on a manifold).
The Kervaire invariant is defined for any stably-parallelizable manifold $ M ^ {4k+} 2 $ as an invariant of framed surgery, and any element in the stable homotopy groups of spheres can be represented either as a framed homotopy sphere or as a closed smooth framed Kervaire manifold (in this case $ m = 4 k + 2 $, $ k \neq 0 , 1 , 3 $), or as the framed manifold $ S ^ {2k+} 1 \times S ^ {2k+} 1 $ if $ k = 0 , 1 , 3 $.
In other words, the Kervaire invariant can be regarded as an obstruction to "carrying over" the given framing on the manifold to the sphere of the same dimension, $ k \neq 0 , 1 , 3 $. In this sense the Kervaire invariant fulfills the same role for the values $ k = 0 , 1 , 3 $: The given framing on $ S ^ {2k+} 1 \times S ^ {2k+} 1 $, $ k = 0 , 1 , 3 $, cannot, in general, be "carried over" to the sphere $ S ^ {4k+} 2 $, $ k = 0 , 1 , 3 $, by means of framed surgery.
L.S. Pontryagin was the first to construct such a framing on the manifold $ S ^ {2k+} 1 \times S ^ {2k+} 1 $ for the case $ k = 0 $, that is, a framing on the $ 2 $- dimensional torus $ ( ( S ^ {1} \times S ^ {1} ) , f _ {r} ) $ that cannot be "carried over" to $ S ^ {2} $. There are also such examples of a framing on the manifolds $ S ^ {3} \times S ^ {3} $ and $ S ^ {7} \times S ^ {7} $.
The fundamental problem concerning the Kervaire invariant is the following: For which odd values of $ n $ does there exist a pair $ ( M ^ {2n} , f _ {r} ) $ with non-zero Kervaire invariant? For $ n \neq 2 ^ {i} - 1 $ the answer to this question is negative and for $ n = 2 ^ {i} - 1 $ it is affirmative, where $ i = 1 $( Pontryagin, see [2]), $ i = 2 , 3 $( M.A. Kervaire and J.W. Milnor, [5], [6]), $ i = 4 $( W. Browder, [3]), $ i = 5 , 6 $( M. Barratt, M. Mahowald, A. Milgram). For other values of $ i $ the answer is unknown (1989).
References
[1] | S.P. Novikov, "Homotopy-equivalent smooth manifolds I" Izv. Akad. Nauk SSSR. Ser. Mat. , 28 : 2 (1964) pp. 365–474 (In Russian) |
[2] | L.S. Pontryagin, "Smooth manifolds and their applications in homology theory" , Moscow (1976) (In Russian) |
[3] | W. Browder, "The Kervaire invariant of framed manifolds and its generalization" Ann. of Math. , 90 (1969) pp. 157–186 |
[4] | W.B. Browder, "Surgery on simply-connected manifolds" , Springer (1972) |
[5] | M. Kervaire, "A manifold which does not admit any differentiable structure" Comm. Math. Helv. , 34 (1960) pp. 257–270 |
[6] | M.A. Kervaire, J.W. Milnor, "Groups of homotopy spheres I" Ann. Mat. , 77 : 3 (1963) pp. 504–537 |
Kervaire invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kervaire_invariant&oldid=47495