Difference between revisions of "Jordan lemma"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | j0543301.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/J054/J.0504330 Jordan lemma | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ f( z) $ | |
+ | be a regular [[Analytic function|analytic function]] of a complex variable $ z $, | ||
+ | where $ | z | > c \geq 0 $, | ||
+ | $ \mathop{\rm Im} z \geq 0 $, | ||
+ | up to a discrete set of singular points. If there is a sequence of semi-circles | ||
− | + | $$ | |
+ | \gamma ( R _ {n} ) = \{ {z } : {| z | = R _ {n} ,\ | ||
+ | \mathop{\rm Im} z \geq 0 } \} | ||
+ | ,\ R _ {n} \uparrow + \infty , | ||
+ | $$ | ||
− | + | such that the maximum $ M ( R _ {n} ) = \max | f ( z) | $ | |
+ | on $ \gamma ( R _ {n} ) $ | ||
+ | tends to zero as $ n \rightarrow \infty $, | ||
+ | then | ||
− | + | $$ | |
+ | \lim\limits _ {n \rightarrow \infty } \int\limits _ {\gamma ( R _ {n} ) } | ||
+ | e ^ {iaz} f ( z) dz = 0 , | ||
+ | $$ | ||
+ | |||
+ | where $ a $ | ||
+ | is any positive number. Jordan's lemma can be applied to residues not only under the condition $ zf ( z) \rightarrow 0 $, | ||
+ | but even when $ f ( z) \rightarrow 0 $ | ||
+ | uniformly on a sequence of semi-circles in the upper or lower half-plane. For example, in order to calculate integrals of the form | ||
+ | |||
+ | $$ | ||
+ | \int\limits _ {- \infty } ^ \infty f ( x) \cos a x \ | ||
+ | d x ,\ \int\limits _ {- \infty } ^ \infty f ( x) \sin a x d x . | ||
+ | $$ | ||
Obtained by C. Jordan [[#References|[1]]]. | Obtained by C. Jordan [[#References|[1]]]. | ||
Line 15: | Line 47: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Jordan, "Cours d'analyse" , '''2''' , Gauthier-Villars (1894) pp. 285–286</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1967) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Jordan, "Cours d'analyse" , '''2''' , Gauthier-Villars (1894) pp. 285–286</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1967) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.S. Mitrinović, J.D. Kečkić, "The Cauchy method of residues: theory and applications" , Reidel (1984)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.S. Mitrinović, J.D. Kečkić, "The Cauchy method of residues: theory and applications" , Reidel (1984)</TD></TR></table> |
Latest revision as of 22:14, 5 June 2020
Let $ f( z) $
be a regular analytic function of a complex variable $ z $,
where $ | z | > c \geq 0 $,
$ \mathop{\rm Im} z \geq 0 $,
up to a discrete set of singular points. If there is a sequence of semi-circles
$$ \gamma ( R _ {n} ) = \{ {z } : {| z | = R _ {n} ,\ \mathop{\rm Im} z \geq 0 } \} ,\ R _ {n} \uparrow + \infty , $$
such that the maximum $ M ( R _ {n} ) = \max | f ( z) | $ on $ \gamma ( R _ {n} ) $ tends to zero as $ n \rightarrow \infty $, then
$$ \lim\limits _ {n \rightarrow \infty } \int\limits _ {\gamma ( R _ {n} ) } e ^ {iaz} f ( z) dz = 0 , $$
where $ a $ is any positive number. Jordan's lemma can be applied to residues not only under the condition $ zf ( z) \rightarrow 0 $, but even when $ f ( z) \rightarrow 0 $ uniformly on a sequence of semi-circles in the upper or lower half-plane. For example, in order to calculate integrals of the form
$$ \int\limits _ {- \infty } ^ \infty f ( x) \cos a x \ d x ,\ \int\limits _ {- \infty } ^ \infty f ( x) \sin a x d x . $$
Obtained by C. Jordan [1].
References
[1] | C. Jordan, "Cours d'analyse" , 2 , Gauthier-Villars (1894) pp. 285–286 |
[2] | B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1967) (In Russian) |
[3] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6 |
Comments
References
[a1] | D.S. Mitrinović, J.D. Kečkić, "The Cauchy method of residues: theory and applications" , Reidel (1984) |
Jordan lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jordan_lemma&oldid=47469