Difference between revisions of "Join"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | j0542501.png | ||
+ | $#A+1 = 38 n = 0 | ||
+ | $#C+1 = 38 : ~/encyclopedia/old_files/data/J054/J.0504250 Join | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of two topological spaces $ X $ | |
+ | and $ Y $'' | ||
− | + | The topological space, denoted by $ X \star Y $, | |
+ | and defined as the quotient space of the product $ X \times Y \times [ 0, 1] $ | ||
+ | by the decomposition whose elements are the sets $ \{ x \} \times Y \times \{ 0 \} $( | ||
+ | $ x \in X $), | ||
+ | $ X \times \{ y \} \times \{ 1 \} $( | ||
+ | $ y \in Y $), | ||
+ | and the individual points of the set $ X \times Y \times [ 0, 1] \setminus ( X \times Y \times \{ 0 \} \cup X \times Y \times \{ 1 \} ) $. | ||
− | + | Examples. If $ X $ | |
+ | consists of a single point, then $ X \star Y $ | ||
+ | is the [[Cone|cone]] over $ Y $. | ||
+ | $ S ^ {n} \star Y $ | ||
+ | is homeomorphic to the $ ( n + 1) $- | ||
+ | fold [[Suspension|suspension]] over $ Y $. | ||
+ | In particular, $ S ^ {n} \star S ^ {m} \approx S ^ {n + m + 1 } $. | ||
+ | The operation of join is commutative and associative (at least in the category of locally compact Hausdorff spaces). For calculating the homology of a join (with coefficients in a principal ideal domain), an analogue of the [[Künneth formula|Künneth formula]] is used: | ||
− | + | $$ | |
+ | \widetilde{H} _ {r + 1 } ( X \star Y) \approx \ | ||
+ | \sum _ {i + j = r } | ||
+ | \widetilde{H} _ {i} ( X) \otimes | ||
+ | \widetilde{H} _ {j} ( Y) \oplus | ||
+ | $$ | ||
+ | $$ | ||
+ | \oplus | ||
+ | \sum _ {i + j = r - 1 } | ||
+ | \mathop{\rm Tor} ( \widetilde{H} _ {i} ( X), \widetilde{H} _ {j} ( Y)). | ||
+ | $$ | ||
+ | The join of an $ r $- | ||
+ | connected space and an $ s $- | ||
+ | connected space is $ ( r + s + 2) $- | ||
+ | connected. The operation of join lies at the basis of Milnor's construction of a universal [[Principal fibre bundle|principal fibre bundle]]. | ||
====Comments==== | ====Comments==== | ||
− | Let | + | Let $ K $ |
+ | and $ L $ | ||
+ | be (abstract) simplicial complexes with vertices $ \{ a ^ {1} , a ^ {2} , . . . \} $ | ||
+ | and $ \{ b ^ {1} , b ^ {2} , . . . \} $, | ||
+ | respectively. Then the join of $ K $ | ||
+ | and $ L $ | ||
+ | is the simplicial complex $ K \star L $ | ||
+ | with vertices $ \{ a ^ {1} , a ^ {2} , . . . \} \cup \{ b ^ {1} , b ^ {2} , . . . \} $ | ||
+ | whose simplices are all subsets of the form $ \{ a ^ {i _ {1} } \dots a ^ {i _ {k} } \} \cup \{ b ^ {j _ {1} } \dots b ^ {j _ {l} } \} $ | ||
+ | for which $ \{ a ^ {i _ {1} } \dots a ^ {i _ {k} } \} $ | ||
+ | is a simplex of $ K $ | ||
+ | and $ \{ b ^ {j _ {1} } \dots b ^ {j _ {l} } \} $ | ||
+ | is a simplex of $ L $. | ||
+ | If $ | K | $ | ||
+ | denotes a geometric realization of a simplicial complex $ K $, | ||
+ | then $ | K \star L | $ | ||
+ | is (homeomorphic to) $ | K | \star | L | $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Lefschetz, "Topology" , Chelsea, reprint (1965) pp. Sect. 47 (Chapt. II §8)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. 25; 437–444</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C.R.F. Maunder, "Algebraic topology" , v. Nostrand-Reinhold (1970)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Lefschetz, "Topology" , Chelsea, reprint (1965) pp. Sect. 47 (Chapt. II §8)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. 25; 437–444</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C.R.F. Maunder, "Algebraic topology" , v. Nostrand-Reinhold (1970)</TD></TR></table> |
Latest revision as of 22:14, 5 June 2020
of two topological spaces $ X $
and $ Y $
The topological space, denoted by $ X \star Y $, and defined as the quotient space of the product $ X \times Y \times [ 0, 1] $ by the decomposition whose elements are the sets $ \{ x \} \times Y \times \{ 0 \} $( $ x \in X $), $ X \times \{ y \} \times \{ 1 \} $( $ y \in Y $), and the individual points of the set $ X \times Y \times [ 0, 1] \setminus ( X \times Y \times \{ 0 \} \cup X \times Y \times \{ 1 \} ) $.
Examples. If $ X $ consists of a single point, then $ X \star Y $ is the cone over $ Y $. $ S ^ {n} \star Y $ is homeomorphic to the $ ( n + 1) $- fold suspension over $ Y $. In particular, $ S ^ {n} \star S ^ {m} \approx S ^ {n + m + 1 } $. The operation of join is commutative and associative (at least in the category of locally compact Hausdorff spaces). For calculating the homology of a join (with coefficients in a principal ideal domain), an analogue of the Künneth formula is used:
$$ \widetilde{H} _ {r + 1 } ( X \star Y) \approx \ \sum _ {i + j = r } \widetilde{H} _ {i} ( X) \otimes \widetilde{H} _ {j} ( Y) \oplus $$
$$ \oplus \sum _ {i + j = r - 1 } \mathop{\rm Tor} ( \widetilde{H} _ {i} ( X), \widetilde{H} _ {j} ( Y)). $$
The join of an $ r $- connected space and an $ s $- connected space is $ ( r + s + 2) $- connected. The operation of join lies at the basis of Milnor's construction of a universal principal fibre bundle.
Comments
Let $ K $ and $ L $ be (abstract) simplicial complexes with vertices $ \{ a ^ {1} , a ^ {2} , . . . \} $ and $ \{ b ^ {1} , b ^ {2} , . . . \} $, respectively. Then the join of $ K $ and $ L $ is the simplicial complex $ K \star L $ with vertices $ \{ a ^ {1} , a ^ {2} , . . . \} \cup \{ b ^ {1} , b ^ {2} , . . . \} $ whose simplices are all subsets of the form $ \{ a ^ {i _ {1} } \dots a ^ {i _ {k} } \} \cup \{ b ^ {j _ {1} } \dots b ^ {j _ {l} } \} $ for which $ \{ a ^ {i _ {1} } \dots a ^ {i _ {k} } \} $ is a simplex of $ K $ and $ \{ b ^ {j _ {1} } \dots b ^ {j _ {l} } \} $ is a simplex of $ L $. If $ | K | $ denotes a geometric realization of a simplicial complex $ K $, then $ | K \star L | $ is (homeomorphic to) $ | K | \star | L | $.
References
[a1] | S. Lefschetz, "Topology" , Chelsea, reprint (1965) pp. Sect. 47 (Chapt. II §8) |
[a2] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. 25; 437–444 |
[a3] | C.R.F. Maunder, "Algebraic topology" , v. Nostrand-Reinhold (1970) |
Join. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Join&oldid=47466