Difference between revisions of "Jensen inequality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | j0542201.png | ||
| + | $#A+1 = 38 n = 0 | ||
| + | $#C+1 = 38 : ~/encyclopedia/old_files/data/J054/J.0504220 Jensen inequality | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''in the simplest discrete form'' | ''in the simplest discrete form'' | ||
The inequality | The inequality | ||
| − | + | $$ \tag{1 } | |
| + | f ( \lambda _ {1} x _ {1} + \dots + | ||
| + | \lambda _ {n} x _ {n} ) \leq \ | ||
| + | \lambda _ {1} f ( x _ {1} ) + \dots + | ||
| + | \lambda _ {n} f ( x _ {n} ), | ||
| + | $$ | ||
| − | where | + | where $ f $ |
| + | is a convex function on some set $ C $ | ||
| + | in $ \mathbf R $( | ||
| + | see [[Convex function (of a real variable)|Convex function (of a real variable)]]), $ x _ {i} \in C $, | ||
| + | $ \lambda _ {i} \geq 0 $, | ||
| + | $ i = 1 \dots n $, | ||
| + | and | ||
| − | + | $$ | |
| + | \lambda _ {1} + \dots + \lambda _ {n} = 1. | ||
| + | $$ | ||
| − | Equality holds if and only if | + | Equality holds if and only if $ x _ {1} = \dots = x _ {n} $ |
| + | or if $ f $ | ||
| + | is linear. Jensen's integral inequality for a convex function $ f $ | ||
| + | is: | ||
| − | + | $$ \tag{2 } | |
| + | f \left ( \int\limits _ { D } \lambda ( t) x ( t) dt | ||
| + | \right ) \leq \int\limits _ { D } | ||
| + | \lambda ( t) f ( x ( t)) dt, | ||
| + | $$ | ||
| − | where | + | where $ x ( D) \subset C $, |
| + | $ \lambda ( t) \geq 0 $ | ||
| + | for $ t \in D $ | ||
| + | and | ||
| − | + | $$ | |
| + | \int\limits _ { D } \lambda ( t) dt = 1. | ||
| + | $$ | ||
| − | Equality holds if and only if either | + | Equality holds if and only if either $ x ( t) = \textrm{ const } $ |
| + | on $ D $ | ||
| + | or if $ f $ | ||
| + | is linear on $ x ( D) $. | ||
| + | If $ f $ | ||
| + | is a concave function, the inequality signs in (1) and (2) must be reversed. Inequality (1) was established by O. Hölder, and (2) by J.L. Jensen [[#References|[2]]]. | ||
| − | With suitable choices of the convex function | + | With suitable choices of the convex function $ f $ |
| + | and the weights $ \lambda _ {i} $ | ||
| + | or weight function $ \lambda $, | ||
| + | inequalities (1) and (2) become concrete inequalities, among which one finds the majority of the classical inequalities. For example, if in (1) one sets $ f( x) = - \mathop{\rm ln} x $, | ||
| + | $ x > 0 $, | ||
| + | then one obtains an inequality between the weighted [[Arithmetic mean|arithmetic mean]] and the [[Geometric mean|geometric mean]]: | ||
| − | + | $$ \tag{3 } | |
| + | x _ {1} ^ {\lambda _ {1} } \dots | ||
| + | x _ {n} ^ {\lambda _ {n} } \leq \ | ||
| + | \lambda _ {1} x _ {1} + \dots + | ||
| + | \lambda _ {n} x _ {n} ; | ||
| + | $$ | ||
| − | for | + | for $ \lambda _ {1} = \dots = \lambda _ {n} = 1/n $, |
| + | inequality (3) takes the form | ||
| − | + | $$ | |
| + | ( x _ {1} \dots x _ {n} ) ^ {1/n} \leq \ | ||
| + | |||
| + | \frac{x _ {1} + \dots + x _ {n} }{n} | ||
| + | . | ||
| + | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Hölder, "Ueber einen Mittelwertsatz" ''Göttinger Nachr.'' (1889) pp. 38–47</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.L. Jensen, "Sur les fonctions convexes et les inégualités entre les valeurs moyennes" ''Acta Math.'' , '''30''' (1906) pp. 175–193</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Hölder, "Ueber einen Mittelwertsatz" ''Göttinger Nachr.'' (1889) pp. 38–47</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.L. Jensen, "Sur les fonctions convexes et les inégualités entre les valeurs moyennes" ''Acta Math.'' , '''30''' (1906) pp. 175–193</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | Jensen's inequality (2) can be generalized by taking instead a [[Probability measure|probability measure]] | + | Jensen's inequality (2) can be generalized by taking instead a [[Probability measure|probability measure]] $ \mu $ |
| + | on a $ \sigma $- | ||
| + | algebra $ {\mathcal M} $ | ||
| + | in a set $ D \subset \mathbf R $, | ||
| + | $ x $ | ||
| + | a bounded real-valued function in $ L _ {1} ( \mu ) $ | ||
| + | and $ f $ | ||
| + | a convex function on the range of $ x $; | ||
| + | then | ||
| − | + | $$ | |
| + | f \left ( \int\limits _ { D } x d \mu \right ) \leq \ | ||
| + | \int\limits _ { D } ( f \circ x) d \mu . | ||
| + | $$ | ||
For another generalization cf. [[#References|[a2]]]. | For another generalization cf. [[#References|[a2]]]. | ||
Latest revision as of 22:14, 5 June 2020
in the simplest discrete form
The inequality
$$ \tag{1 } f ( \lambda _ {1} x _ {1} + \dots + \lambda _ {n} x _ {n} ) \leq \ \lambda _ {1} f ( x _ {1} ) + \dots + \lambda _ {n} f ( x _ {n} ), $$
where $ f $ is a convex function on some set $ C $ in $ \mathbf R $( see Convex function (of a real variable)), $ x _ {i} \in C $, $ \lambda _ {i} \geq 0 $, $ i = 1 \dots n $, and
$$ \lambda _ {1} + \dots + \lambda _ {n} = 1. $$
Equality holds if and only if $ x _ {1} = \dots = x _ {n} $ or if $ f $ is linear. Jensen's integral inequality for a convex function $ f $ is:
$$ \tag{2 } f \left ( \int\limits _ { D } \lambda ( t) x ( t) dt \right ) \leq \int\limits _ { D } \lambda ( t) f ( x ( t)) dt, $$
where $ x ( D) \subset C $, $ \lambda ( t) \geq 0 $ for $ t \in D $ and
$$ \int\limits _ { D } \lambda ( t) dt = 1. $$
Equality holds if and only if either $ x ( t) = \textrm{ const } $ on $ D $ or if $ f $ is linear on $ x ( D) $. If $ f $ is a concave function, the inequality signs in (1) and (2) must be reversed. Inequality (1) was established by O. Hölder, and (2) by J.L. Jensen [2].
With suitable choices of the convex function $ f $ and the weights $ \lambda _ {i} $ or weight function $ \lambda $, inequalities (1) and (2) become concrete inequalities, among which one finds the majority of the classical inequalities. For example, if in (1) one sets $ f( x) = - \mathop{\rm ln} x $, $ x > 0 $, then one obtains an inequality between the weighted arithmetic mean and the geometric mean:
$$ \tag{3 } x _ {1} ^ {\lambda _ {1} } \dots x _ {n} ^ {\lambda _ {n} } \leq \ \lambda _ {1} x _ {1} + \dots + \lambda _ {n} x _ {n} ; $$
for $ \lambda _ {1} = \dots = \lambda _ {n} = 1/n $, inequality (3) takes the form
$$ ( x _ {1} \dots x _ {n} ) ^ {1/n} \leq \ \frac{x _ {1} + \dots + x _ {n} }{n} . $$
References
| [1] | O. Hölder, "Ueber einen Mittelwertsatz" Göttinger Nachr. (1889) pp. 38–47 |
| [2] | J.L. Jensen, "Sur les fonctions convexes et les inégualités entre les valeurs moyennes" Acta Math. , 30 (1906) pp. 175–193 |
| [3] | G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934) |
Comments
Jensen's inequality (2) can be generalized by taking instead a probability measure $ \mu $ on a $ \sigma $- algebra $ {\mathcal M} $ in a set $ D \subset \mathbf R $, $ x $ a bounded real-valued function in $ L _ {1} ( \mu ) $ and $ f $ a convex function on the range of $ x $; then
$$ f \left ( \int\limits _ { D } x d \mu \right ) \leq \ \int\limits _ { D } ( f \circ x) d \mu . $$
For another generalization cf. [a2].
References
| [a1] | W. Rudin, "Real and complex analysis" , McGraw-Hill (1978) pp. 24 |
| [a2] | P.S. Bullen, D.S. Mitrinović, P.M. Vasić, "Means and their inequalities" , Reidel (1988) pp. 27ff |
Jensen inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jensen_inequality&oldid=47465