Difference between revisions of "Isotropy representation"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i0529801.png | ||
+ | $#A+1 = 50 n = 0 | ||
+ | $#C+1 = 50 : ~/encyclopedia/old_files/data/I052/I.0502980 Isotropy representation | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | The | + | The natural linear representation of the [[Isotropy group|isotropy group]] of a differentiable transformation group in the tangent space to the underlying manifold. If $ G $ |
+ | is a group of differentiable transformations on a manifold $ M $ | ||
+ | and $ G _ {x} $ | ||
+ | is the corresponding isotropy subgroup at the point $ x \in M $, | ||
+ | then the isotropy representation $ \mathop{\rm Is} _ {x} : G _ {x} \rightarrow \mathop{\rm GL} ( T _ {x} M ) $ | ||
+ | associates with each $ h \in G _ {x} $ | ||
+ | the differential $ \mathop{\rm Is} _ {x} ( h) = d h _ {x} $ | ||
+ | of the transformation $ h $ | ||
+ | at $ x $. | ||
+ | The image of the isotropy representation, $ \mathop{\rm Is} _ {x} ( G _ {x} ) $, | ||
+ | is called the linear isotropy group at $ x $. | ||
+ | If $ G $ | ||
+ | is a Lie group with a countable base acting smoothly and transitively on $ M $, | ||
+ | then the tangent space $ T _ {x} M $ | ||
+ | can naturally be identified with the space $ \mathfrak g / \mathfrak g _ {x} $, | ||
+ | where $ \mathfrak g \supset \mathfrak g _ {x} $ | ||
+ | are the Lie algebras of the groups $ G \supset G _ {x} $. | ||
+ | Furthermore, the isotropy representation $ \mathop{\rm Is} _ {x} $ | ||
+ | is now identified with the representation $ G _ {x} \rightarrow \mathop{\rm GL} ( \mathfrak g / \mathfrak g _ {x} ) $ | ||
+ | induced by the restriction of the adjoint representation (cf. [[Adjoint representation of a Lie group|Adjoint representation of a Lie group]]) $ \mathop{\rm Ad} _ {G} $ | ||
+ | of $ G $ | ||
+ | to $ G _ {x} $. | ||
− | + | If a [[Homogeneous space|homogeneous space]] $ M $ | |
+ | is reductive, that is, if $ \mathfrak g = \mathfrak g _ {x} \dot{+} m $, | ||
+ | where $ m $ | ||
+ | is an invariant subspace with respect to $ \mathop{\rm Ad} _ {G} ( G _ {x} ) $, | ||
+ | then $ T _ {x} M $ | ||
+ | can be identified with $ m $, | ||
+ | while $ \mathop{\rm Is} _ {x} $ | ||
+ | can be identified with the representation $ h \mapsto ( \mathop{\rm Ad} _ {G} h ) \mid _ {m} $( | ||
+ | see [[#References|[3]]]). In this case, the isotropy representation is faithful (cf. [[Faithful representation|Faithful representation]]) if $ G $ | ||
+ | acts effectively. | ||
− | + | The isotropy representation and linear isotropy group play an important role in the study of invariant objects on homogeneous spaces (cf. [[Invariant object|Invariant object]]). The invariant tensor fields on a homogeneous space $ M $ | |
+ | are in one-to-one correspondence with the tensors on $ T _ {x} M $ | ||
+ | that are invariant with respect to the isotropy representation. In particular, $ M $ | ||
+ | has an invariant Riemannian metric if and only if $ T _ {x} M $ | ||
+ | has a Euclidean metric that is invariant under the linear isotropy group. There exists on the homogeneous space $ M $ | ||
+ | a positive [[Invariant measure|invariant measure]] if and only if $ | \mathop{\rm det} A | = 1 $ | ||
+ | for all $ A \in \mathop{\rm Is} _ {x} ( G _ {x} ) $. | ||
+ | A homogeneous space has an invariant orientation if and only if $ \mathop{\rm det} A > 0 $ | ||
+ | for all $ A \in \mathop{\rm Is} _ {x} ( G _ {x} ) $. | ||
+ | The invariant linear connections on $ M $ | ||
+ | are in one-to-one correspondence with the linear mappings $ \Lambda : \mathfrak g \rightarrow \mathfrak g \mathfrak l ( T _ {x} M ) $ | ||
+ | with the following properties: | ||
− | A generalization of the concept of the isotropy representation is the concept of the isotropy representation of order | + | $$ |
+ | \left . \Lambda \right | _ {\mathfrak g _ {x} } = \ | ||
+ | ( d \mathop{\rm Is} _ {x} ) _ {e} , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \Lambda ( ( \mathop{\rm Ad} h ) X) = \mathop{\rm Is} _ {x} ( h) \Lambda ( X) \mathop{\rm Is} _ {x} ( h) ^ {-} 1 \ ( h \in G _ {x} ) . | ||
+ | $$ | ||
+ | |||
+ | A generalization of the concept of the isotropy representation is the concept of the isotropy representation of order $ r $. | ||
+ | This is a homomorphism $ h \rightarrow j _ {x} ^ {r} h $ | ||
+ | of the group $ G _ {x} $ | ||
+ | into the group $ L ^ {r} ( T _ {x} M ) $ | ||
+ | of invertible $ r $- | ||
+ | jets of diffeomorphisms of the space $ T _ {x} M $ | ||
+ | taking the zero to itself. This concept is used in the study of invariant objects of higher orders. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Sulanke, P. Wintgen, "Differentialgeometrie und Faserbündel" , Deutsch. Verlag Wissenschaft. (1972)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.K. Rashevskii, "On the geometry of homogeneous spaces" , ''Proc. Sem. Vektor. Tenzor. Anal. i Prilozh. k Geom., Mekh. i Fiz.'' , '''9''' , Moscow-Leningrad (1952) pp. 49–74 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Cartan, "La théorie des groupes finis et continus et l'analyse situs" , Gauthier-Villars (1930)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''2''' , Interscience (1969)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Sulanke, P. Wintgen, "Differentialgeometrie und Faserbündel" , Deutsch. Verlag Wissenschaft. (1972)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.K. Rashevskii, "On the geometry of homogeneous spaces" , ''Proc. Sem. Vektor. Tenzor. Anal. i Prilozh. k Geom., Mekh. i Fiz.'' , '''9''' , Moscow-Leningrad (1952) pp. 49–74 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Cartan, "La théorie des groupes finis et continus et l'analyse situs" , Gauthier-Villars (1930)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''2''' , Interscience (1969)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR></table> |
Revision as of 22:13, 5 June 2020
The natural linear representation of the isotropy group of a differentiable transformation group in the tangent space to the underlying manifold. If $ G $
is a group of differentiable transformations on a manifold $ M $
and $ G _ {x} $
is the corresponding isotropy subgroup at the point $ x \in M $,
then the isotropy representation $ \mathop{\rm Is} _ {x} : G _ {x} \rightarrow \mathop{\rm GL} ( T _ {x} M ) $
associates with each $ h \in G _ {x} $
the differential $ \mathop{\rm Is} _ {x} ( h) = d h _ {x} $
of the transformation $ h $
at $ x $.
The image of the isotropy representation, $ \mathop{\rm Is} _ {x} ( G _ {x} ) $,
is called the linear isotropy group at $ x $.
If $ G $
is a Lie group with a countable base acting smoothly and transitively on $ M $,
then the tangent space $ T _ {x} M $
can naturally be identified with the space $ \mathfrak g / \mathfrak g _ {x} $,
where $ \mathfrak g \supset \mathfrak g _ {x} $
are the Lie algebras of the groups $ G \supset G _ {x} $.
Furthermore, the isotropy representation $ \mathop{\rm Is} _ {x} $
is now identified with the representation $ G _ {x} \rightarrow \mathop{\rm GL} ( \mathfrak g / \mathfrak g _ {x} ) $
induced by the restriction of the adjoint representation (cf. Adjoint representation of a Lie group) $ \mathop{\rm Ad} _ {G} $
of $ G $
to $ G _ {x} $.
If a homogeneous space $ M $ is reductive, that is, if $ \mathfrak g = \mathfrak g _ {x} \dot{+} m $, where $ m $ is an invariant subspace with respect to $ \mathop{\rm Ad} _ {G} ( G _ {x} ) $, then $ T _ {x} M $ can be identified with $ m $, while $ \mathop{\rm Is} _ {x} $ can be identified with the representation $ h \mapsto ( \mathop{\rm Ad} _ {G} h ) \mid _ {m} $( see [3]). In this case, the isotropy representation is faithful (cf. Faithful representation) if $ G $ acts effectively.
The isotropy representation and linear isotropy group play an important role in the study of invariant objects on homogeneous spaces (cf. Invariant object). The invariant tensor fields on a homogeneous space $ M $ are in one-to-one correspondence with the tensors on $ T _ {x} M $ that are invariant with respect to the isotropy representation. In particular, $ M $ has an invariant Riemannian metric if and only if $ T _ {x} M $ has a Euclidean metric that is invariant under the linear isotropy group. There exists on the homogeneous space $ M $ a positive invariant measure if and only if $ | \mathop{\rm det} A | = 1 $ for all $ A \in \mathop{\rm Is} _ {x} ( G _ {x} ) $. A homogeneous space has an invariant orientation if and only if $ \mathop{\rm det} A > 0 $ for all $ A \in \mathop{\rm Is} _ {x} ( G _ {x} ) $. The invariant linear connections on $ M $ are in one-to-one correspondence with the linear mappings $ \Lambda : \mathfrak g \rightarrow \mathfrak g \mathfrak l ( T _ {x} M ) $ with the following properties:
$$ \left . \Lambda \right | _ {\mathfrak g _ {x} } = \ ( d \mathop{\rm Is} _ {x} ) _ {e} , $$
$$ \Lambda ( ( \mathop{\rm Ad} h ) X) = \mathop{\rm Is} _ {x} ( h) \Lambda ( X) \mathop{\rm Is} _ {x} ( h) ^ {-} 1 \ ( h \in G _ {x} ) . $$
A generalization of the concept of the isotropy representation is the concept of the isotropy representation of order $ r $. This is a homomorphism $ h \rightarrow j _ {x} ^ {r} h $ of the group $ G _ {x} $ into the group $ L ^ {r} ( T _ {x} M ) $ of invertible $ r $- jets of diffeomorphisms of the space $ T _ {x} M $ taking the zero to itself. This concept is used in the study of invariant objects of higher orders.
References
[1] | R. Sulanke, P. Wintgen, "Differentialgeometrie und Faserbündel" , Deutsch. Verlag Wissenschaft. (1972) |
[2] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) |
[3] | P.K. Rashevskii, "On the geometry of homogeneous spaces" , Proc. Sem. Vektor. Tenzor. Anal. i Prilozh. k Geom., Mekh. i Fiz. , 9 , Moscow-Leningrad (1952) pp. 49–74 (In Russian) |
[4] | E. Cartan, "La théorie des groupes finis et continus et l'analyse situs" , Gauthier-Villars (1930) |
[5] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 2 , Interscience (1969) |
Comments
References
[a1] | S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 |
Isotropy representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Isotropy_representation&oldid=47447