|
|
Line 1: |
Line 1: |
− | The geometric interpretation of a completely-integrable differential system on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i0525501.png" />-dimensional differentiable manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i0525502.png" /> of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i0525503.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i0525504.png" />. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i0525506.png" />-dimensional distribution (or a differential system of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i0525508.png" />) of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i0525509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255010.png" />, on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255011.png" /> is a function associating to each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255012.png" /> a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255013.png" />-dimensional linear subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255014.png" /> of the tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255016.png" /> has a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255017.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255018.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255019.png" /> vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255020.png" /> on it for which the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255021.png" /> form a basis of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255022.png" /> at each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255023.png" />. The distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255024.png" /> is said to be involutive if for all points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255025.png" />,
| + | <!-- |
| + | i0525501.png |
| + | $#A+1 = 42 n = 0 |
| + | $#C+1 = 42 : ~/encyclopedia/old_files/data/I052/I.0502550 Involutive distribution |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255026.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | This condition can also be stated in terms of differential forms. The distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255027.png" /> is characterized by the fact that
| + | The geometric interpretation of a completely-integrable differential system on an $ n $- |
| + | dimensional differentiable manifold $ M ^ {n} $ |
| + | of class $ C ^ {k} $, |
| + | $ k \geq 3 $. |
| + | A $ p $- |
| + | dimensional distribution (or a differential system of dimension $ p $) |
| + | of class $ C ^ {r} $, |
| + | $ 1 \leq r < k $, |
| + | on $ M ^ {n} $ |
| + | is a function associating to each point $ x \in M ^ {n} $ |
| + | a $ p $- |
| + | dimensional linear subspace $ D( x) $ |
| + | of the tangent space $ T _ {x} ( M ^ {n} ) $ |
| + | such that $ x $ |
| + | has a neighbourhood $ U $ |
| + | with $ p $ |
| + | $ C ^ {r} $ |
| + | vector fields $ X _ {1} \dots X _ {p} $ |
| + | on it for which the vectors $ X _ {1} ( y) \dots X _ {p} ( y) $ |
| + | form a basis of the space $ D ( y) $ |
| + | at each point $ y \in U $. |
| + | The distribution $ D $ |
| + | is said to be involutive if for all points $ y \in U $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255028.png" /></td> </tr></table>
| + | $$ |
| + | [ X _ {i} , X _ {j} ] ( y) \in D ( y) ,\ \ |
| + | 1 \leq i , j \leq p . |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255029.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255030.png" />-forms of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255031.png" />, linearly independent at each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255032.png" />; in other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255033.png" /> is locally equivalent to the system of differential equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255034.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255035.png" /> is an involutive distribution if there exist <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255036.png" />-forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255037.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255038.png" /> such that
| + | This condition can also be stated in terms of differential forms. The distribution $ D $ |
| + | is characterized by the fact that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255039.png" /></td> </tr></table>
| + | $$ |
| + | D ( y) = \{ {X \in T _ {y} ( M ^ {n} ) } : { |
| + | \omega ^ \alpha ( y) ( X) = 0 } \} |
| + | ,\ p < \alpha \leq n , |
| + | $$ |
| | | |
− | that is, the exterior differentials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255040.png" /> belong to the ideal generated by the forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255041.png" />.
| + | where $ \omega ^ {p+} 1 \dots \omega ^ {n} $ |
| + | are $ 1 $- |
| + | forms of class $ C ^ {r} $, |
| + | linearly independent at each point $ x \in U $; |
| + | in other words, $ D $ |
| + | is locally equivalent to the system of differential equations $ \omega ^ \alpha = 0 $. |
| + | Then $ D $ |
| + | is an involutive distribution if there exist $ 1 $- |
| + | forms $ \omega _ \beta ^ \alpha $ |
| + | on $ U $ |
| + | such that |
| | | |
− | A distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255042.png" /> of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255043.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255044.png" /> is involutive if and only if (as a differential system) it is an [[Integrable system|integrable system]] (Frobenius' theorem).
| + | $$ |
| + | d \omega ^ \alpha = \ |
| + | \sum _ {\beta = p + 1 } ^ { n } |
| + | \omega ^ \beta \wedge \omega _ \beta ^ \alpha , |
| + | $$ |
| + | |
| + | that is, the exterior differentials $ d \omega ^ \alpha $ |
| + | belong to the ideal generated by the forms $ \omega ^ \beta $. |
| + | |
| + | A distribution $ D $ |
| + | of class $ C ^ {r} $ |
| + | on $ M ^ {n} $ |
| + | is involutive if and only if (as a differential system) it is an [[Integrable system|integrable system]] (Frobenius' theorem). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Chevalley, "Theory of Lie groups" , '''1''' , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Narasimhan, "Analysis on real and complex manifolds" , North-Holland & Masson (1968) (Translated from French)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Chevalley, "Theory of Lie groups" , '''1''' , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Narasimhan, "Analysis on real and complex manifolds" , North-Holland & Masson (1968) (Translated from French)</TD></TR></table> |
The geometric interpretation of a completely-integrable differential system on an $ n $-
dimensional differentiable manifold $ M ^ {n} $
of class $ C ^ {k} $,
$ k \geq 3 $.
A $ p $-
dimensional distribution (or a differential system of dimension $ p $)
of class $ C ^ {r} $,
$ 1 \leq r < k $,
on $ M ^ {n} $
is a function associating to each point $ x \in M ^ {n} $
a $ p $-
dimensional linear subspace $ D( x) $
of the tangent space $ T _ {x} ( M ^ {n} ) $
such that $ x $
has a neighbourhood $ U $
with $ p $
$ C ^ {r} $
vector fields $ X _ {1} \dots X _ {p} $
on it for which the vectors $ X _ {1} ( y) \dots X _ {p} ( y) $
form a basis of the space $ D ( y) $
at each point $ y \in U $.
The distribution $ D $
is said to be involutive if for all points $ y \in U $,
$$
[ X _ {i} , X _ {j} ] ( y) \in D ( y) ,\ \
1 \leq i , j \leq p .
$$
This condition can also be stated in terms of differential forms. The distribution $ D $
is characterized by the fact that
$$
D ( y) = \{ {X \in T _ {y} ( M ^ {n} ) } : {
\omega ^ \alpha ( y) ( X) = 0 } \}
,\ p < \alpha \leq n ,
$$
where $ \omega ^ {p+} 1 \dots \omega ^ {n} $
are $ 1 $-
forms of class $ C ^ {r} $,
linearly independent at each point $ x \in U $;
in other words, $ D $
is locally equivalent to the system of differential equations $ \omega ^ \alpha = 0 $.
Then $ D $
is an involutive distribution if there exist $ 1 $-
forms $ \omega _ \beta ^ \alpha $
on $ U $
such that
$$
d \omega ^ \alpha = \
\sum _ {\beta = p + 1 } ^ { n }
\omega ^ \beta \wedge \omega _ \beta ^ \alpha ,
$$
that is, the exterior differentials $ d \omega ^ \alpha $
belong to the ideal generated by the forms $ \omega ^ \beta $.
A distribution $ D $
of class $ C ^ {r} $
on $ M ^ {n} $
is involutive if and only if (as a differential system) it is an integrable system (Frobenius' theorem).
References
[1] | C. Chevalley, "Theory of Lie groups" , 1 , Princeton Univ. Press (1946) |
[2] | R. Narasimhan, "Analysis on real and complex manifolds" , North-Holland & Masson (1968) (Translated from French) |