Difference between revisions of "Invariant integration"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | i0522401.png | ||
+ | $#A+1 = 75 n = 0 | ||
+ | $#C+1 = 75 : ~/encyclopedia/old_files/data/I052/I.0502240 Invariant integration | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''on a group'' | ''on a group'' | ||
− | Integration of functions on a [[Topological group|topological group]] that has a certain invariant property with respect to the group operations. Thus, let | + | Integration of functions on a [[Topological group|topological group]] that has a certain invariant property with respect to the group operations. Thus, let $ G $ |
+ | be a locally compact topological group, let $ C _ {0} ( G) $ | ||
+ | be the vector space of all continuous complex-valued functions with compact support on $ G $ | ||
+ | and let $ I $ | ||
+ | be an integral on $ C _ {0} ( G) $, | ||
+ | that is, a positive [[Linear functional|linear functional]] on $ C _ {0} ( G) $( | ||
+ | $ I f \geq 0 $ | ||
+ | for $ f \geq 0 $). | ||
+ | The integral $ I $ | ||
+ | is called left-invariant (or right-invariant) if $ I ( gf ) = If $( | ||
+ | or $ I ( fg ) = If $) | ||
+ | for all $ g \in G $, | ||
+ | $ f \in C _ {0} ( G) $; | ||
+ | here | ||
− | + | $$ | |
+ | ( gf ) ( x ) = f ( g ^ {-} 1 x ) ,\ \ | ||
+ | ( fg ) ( x) = f ( x g ) . | ||
+ | $$ | ||
− | The integral | + | The integral $ I $ |
+ | is called (two-sided) invariant if it is both left- and right-invariant. The mapping $ I \rightarrow \widehat{I} $, | ||
+ | where $ \widehat{I} f = I \widehat{f} $, | ||
+ | $ \widehat{f} ( x) = f ( x ^ {-} 1 ) $, | ||
+ | defines a one-to-one correspondence between the classes of left- and right-invariant integrals on $ C _ {0} ( G) $. | ||
+ | If $ I = \widehat{I} $, | ||
+ | then $ I $ | ||
+ | is called inversion invariant. | ||
− | There exists on every locally compact group | + | There exists on every locally compact group $ G $ |
+ | a non-zero left-invariant integral; it is unique up to a numerical factor (the Haar–von Neumann–Weil theorem). This integral is called the left Haar integral. The following equation holds: | ||
− | + | $$ | |
+ | I ( fg ) = \Delta ( g ) I f , | ||
+ | $$ | ||
− | where | + | where $ g \in G $, |
+ | $ f \in C _ {0} ( G ) $ | ||
+ | and $ \Delta $ | ||
+ | is a continuous homomorphism from the group $ G $ | ||
+ | into the multiplicative group of positive real numbers (a positive character). Furthermore, $ \widehat{I} f = I ( f / \Delta ) $. | ||
+ | The character $ \Delta $ | ||
+ | is called the modulus of $ G $. | ||
+ | If $ \Delta ( g) \equiv 1 $, | ||
+ | then $ G $ | ||
+ | is called unimodular. In this case $ I $ | ||
+ | is a two-sided invariant integral. | ||
− | In particular, every compact group (where < | + | In particular, every compact group (where $ I1 < \infty $, |
+ | $ \widehat{I} = I $) | ||
+ | and every discrete group (where $ If = \sum _ {g} f ( g) $, | ||
+ | $ f \in C _ {0} ( G) $) | ||
+ | is unimodular. | ||
− | According to the Riesz theorem, every integral on | + | According to the Riesz theorem, every integral on $ C _ {0} ( G) $ |
+ | is a [[Lebesgue integral|Lebesgue integral]] with respect to some [[Borel measure|Borel measure]] $ \mu $ | ||
+ | which is uniquely defined in the class of Borel measures that are finite on each compact subset $ K \subset G $. | ||
+ | The left- (or right-) invariant measure $ \mu $ | ||
+ | corresponding to the left (right) Haar integral on $ C _ {0} ( G) $ | ||
+ | is called the left (right) [[Haar measure|Haar measure]] on $ G $. | ||
− | Let | + | Let $ H $ |
+ | be a closed subgroup of $ G $ | ||
+ | and let $ \Delta _ {0} $ | ||
+ | be the modulus of $ H $. | ||
+ | If $ \Delta _ {0} $ | ||
+ | can be extended to a continuous positive character of $ G $( | ||
+ | cf. [[Character of a group|Character of a group]]), then there exists on the left homogeneous space $ X = G / H $ | ||
+ | a relatively invariant integral $ J $, | ||
+ | that is, a positive functional on the space $ C _ {0} ( X) $ | ||
+ | of continuous functions with compact support on $ X $ | ||
+ | that satisfies the identity | ||
− | + | $$ | |
+ | J ( gf ) = \delta ( g ) J f | ||
+ | $$ | ||
− | for all | + | for all $ g \in G $, |
+ | $ f \in C _ {0} ( X) $; | ||
+ | here | ||
− | + | $$ | |
+ | ( gf ) ( x) = f ( g ^ {-} 1 x ) ,\ \ | ||
+ | \delta ( g) = | ||
+ | \frac{\Delta _ {0} ( g) }{\Delta ( g) } | ||
+ | , | ||
+ | $$ | ||
− | and | + | and $ \Delta $ |
+ | is the modulus of $ G $. | ||
+ | This integral is defined by the rule $ J f = I ( \delta \widetilde{f} ) $, | ||
+ | where $ I $ | ||
+ | is the left Haar integral on $ G $ | ||
+ | and $ \widetilde{f} $ | ||
+ | is a function on $ G $ | ||
+ | such that | ||
− | + | $$ | |
+ | f ( gH ) = I _ {0} (( g \widetilde{f} ) _ {H} ) . | ||
+ | $$ | ||
− | ( | + | ( $ I _ {0} $ |
+ | is the left Haar integral on $ H $ | ||
+ | and $ \phi _ {H} $ | ||
+ | is the restriction of $ \phi $ | ||
+ | to $ H $.) | ||
+ | This is well-defined since $ \widetilde{f} \rightarrow f $ | ||
+ | is a mapping from $ C _ {0} ( G) $ | ||
+ | onto $ C _ {0} ( X) $ | ||
+ | and $ Jf = 0 $ | ||
+ | when $ f = 0 $. | ||
+ | The notion of an invariant mean (cf. [[Invariant average|Invariant average]]) is closely related to that of invariant integration. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.H. Loomis, "An introduction to abstract harmonic analysis" , v. Nostrand (1953)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , '''1''' , Springer (1979)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.H. Loomis, "An introduction to abstract harmonic analysis" , v. Nostrand (1953)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , '''1''' , Springer (1979)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Reiter, "Classical harmonic analysis and locally compact groups" , Clarendon Press (1968)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Reiter, "Classical harmonic analysis and locally compact groups" , Clarendon Press (1968)</TD></TR></table> |
Latest revision as of 22:13, 5 June 2020
on a group
Integration of functions on a topological group that has a certain invariant property with respect to the group operations. Thus, let $ G $ be a locally compact topological group, let $ C _ {0} ( G) $ be the vector space of all continuous complex-valued functions with compact support on $ G $ and let $ I $ be an integral on $ C _ {0} ( G) $, that is, a positive linear functional on $ C _ {0} ( G) $( $ I f \geq 0 $ for $ f \geq 0 $). The integral $ I $ is called left-invariant (or right-invariant) if $ I ( gf ) = If $( or $ I ( fg ) = If $) for all $ g \in G $, $ f \in C _ {0} ( G) $; here
$$ ( gf ) ( x ) = f ( g ^ {-} 1 x ) ,\ \ ( fg ) ( x) = f ( x g ) . $$
The integral $ I $ is called (two-sided) invariant if it is both left- and right-invariant. The mapping $ I \rightarrow \widehat{I} $, where $ \widehat{I} f = I \widehat{f} $, $ \widehat{f} ( x) = f ( x ^ {-} 1 ) $, defines a one-to-one correspondence between the classes of left- and right-invariant integrals on $ C _ {0} ( G) $. If $ I = \widehat{I} $, then $ I $ is called inversion invariant.
There exists on every locally compact group $ G $ a non-zero left-invariant integral; it is unique up to a numerical factor (the Haar–von Neumann–Weil theorem). This integral is called the left Haar integral. The following equation holds:
$$ I ( fg ) = \Delta ( g ) I f , $$
where $ g \in G $, $ f \in C _ {0} ( G ) $ and $ \Delta $ is a continuous homomorphism from the group $ G $ into the multiplicative group of positive real numbers (a positive character). Furthermore, $ \widehat{I} f = I ( f / \Delta ) $. The character $ \Delta $ is called the modulus of $ G $. If $ \Delta ( g) \equiv 1 $, then $ G $ is called unimodular. In this case $ I $ is a two-sided invariant integral.
In particular, every compact group (where $ I1 < \infty $, $ \widehat{I} = I $) and every discrete group (where $ If = \sum _ {g} f ( g) $, $ f \in C _ {0} ( G) $) is unimodular.
According to the Riesz theorem, every integral on $ C _ {0} ( G) $ is a Lebesgue integral with respect to some Borel measure $ \mu $ which is uniquely defined in the class of Borel measures that are finite on each compact subset $ K \subset G $. The left- (or right-) invariant measure $ \mu $ corresponding to the left (right) Haar integral on $ C _ {0} ( G) $ is called the left (right) Haar measure on $ G $.
Let $ H $ be a closed subgroup of $ G $ and let $ \Delta _ {0} $ be the modulus of $ H $. If $ \Delta _ {0} $ can be extended to a continuous positive character of $ G $( cf. Character of a group), then there exists on the left homogeneous space $ X = G / H $ a relatively invariant integral $ J $, that is, a positive functional on the space $ C _ {0} ( X) $ of continuous functions with compact support on $ X $ that satisfies the identity
$$ J ( gf ) = \delta ( g ) J f $$
for all $ g \in G $, $ f \in C _ {0} ( X) $; here
$$ ( gf ) ( x) = f ( g ^ {-} 1 x ) ,\ \ \delta ( g) = \frac{\Delta _ {0} ( g) }{\Delta ( g) } , $$
and $ \Delta $ is the modulus of $ G $. This integral is defined by the rule $ J f = I ( \delta \widetilde{f} ) $, where $ I $ is the left Haar integral on $ G $ and $ \widetilde{f} $ is a function on $ G $ such that
$$ f ( gH ) = I _ {0} (( g \widetilde{f} ) _ {H} ) . $$
( $ I _ {0} $ is the left Haar integral on $ H $ and $ \phi _ {H} $ is the restriction of $ \phi $ to $ H $.) This is well-defined since $ \widetilde{f} \rightarrow f $ is a mapping from $ C _ {0} ( G) $ onto $ C _ {0} ( X) $ and $ Jf = 0 $ when $ f = 0 $. The notion of an invariant mean (cf. Invariant average) is closely related to that of invariant integration.
References
[1] | N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) |
[2] | A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940) |
[3] | L.H. Loomis, "An introduction to abstract harmonic analysis" , v. Nostrand (1953) |
[4] | E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , 1 , Springer (1979) |
Comments
References
[a1] | H. Reiter, "Classical harmonic analysis and locally compact groups" , Clarendon Press (1968) |
Invariant integration. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invariant_integration&oldid=47413