Difference between revisions of "Invariance, principle of"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i0521901.png | ||
+ | $#A+1 = 27 n = 0 | ||
+ | $#C+1 = 27 : ~/encyclopedia/old_files/data/I052/I.0502190 Invariance, principle of | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ X _ {1} , X _ {2} \dots $ | |
+ | be independent identically-distributed real-valued random variables with zero expectation and variance $ \sigma ^ {2} $; | ||
+ | consider the random polygonal line | ||
− | + | $$ | |
+ | Y _ {n} ( t ) = | ||
+ | \frac{1}{\sigma \sqrt n } | ||
− | + | \{ S _ {[ nt ] } + ( nt - [ nt ] ) X _ {[ nt ] + 1 } \} ,\ \ | |
+ | 0 \leq t \leq 1 , | ||
+ | $$ | ||
− | + | where $ S _ {m} = \sum _ {i=} 1 ^ {m} X _ {i} $. | |
+ | If $ f $ | ||
+ | is a real-valued continuous function on the space $ C [ 0 , 1] $ | ||
+ | of continuous functions on $ [ 0 , 1 ] $ | ||
+ | with the supremum norm (or only continuous everywhere except on a set of Wiener measure zero), then $ f ( Y _ {n} ) $ | ||
+ | converges in distribution to $ f ( W ) $, | ||
+ | where $ W $ | ||
+ | is a Wiener random function. Thus, the limiting distribution for the $ f ( Y _ {n} ) $ | ||
+ | does not depend on any special properties of the $ X _ {1} , X _ {2} , . . . $. | ||
− | + | A typical scheme for the use of the invariance principle consists in finding the limiting distribution for the $ f ( Y _ {n} ) $ | |
+ | by finding the limiting distribution for $ f ( Y _ {n} ^ \prime ) $, | ||
+ | where $ Y _ {n} ^ \prime $ | ||
+ | is a random polygonal line constructed in the same way as $ Y _ {n} $ | ||
+ | from some specially chosen sequence $ X _ {1} ^ \prime , X _ {2} ^ \prime , . . . $. | ||
+ | For example, if | ||
+ | |||
+ | $$ | ||
+ | f ( x ) = \sup _ {0 \leq t \leq 1 } x ( t ) , | ||
+ | $$ | ||
+ | |||
+ | then $ f $ | ||
+ | is continuous on $ C $, | ||
+ | and, since | ||
+ | |||
+ | $$ | ||
+ | f ( Y _ {n} ) = | ||
+ | \frac{1}{\sigma \sqrt n } | ||
+ | \max _ {1 \leq m \leq | ||
+ | n } S _ {m} , | ||
+ | $$ | ||
one has that | one has that | ||
− | + | $$ | |
− | + | \frac{1}{\sigma \sqrt n } | |
+ | \max _ {1 \leq m \leq n } S _ {m} $$ | ||
− | + | converges in distribution to $ \sup _ {t} W ( t ) $. | |
+ | To find the distribution of $ \sup _ {t} W ( t ) $, | ||
+ | the sequence $ \{ X _ {n} ^ \prime \} : $ | ||
+ | $ {\mathsf P} \{ X _ {n} ^ \prime = 1 \} = {\mathsf P} \{ X _ {n} ^ \prime = - 1 \} = 1 / 2 $ | ||
+ | is used, and as a result of the calculations one obtains | ||
+ | |||
+ | $$ | ||
+ | {\mathsf P} \left \{ \sup _ { t } W ( t ) \leq a \right \} = \ | ||
+ | \sqrt { | ||
+ | \frac{2} \pi | ||
+ | } \int\limits _ { 0 } ^ { a } e ^ {- u ^ {2} / 2 } du ,\ a | ||
+ | \geq 0 . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Donsker, "An invariance principle for certain probability limit theorems" ''Memoirs Amer. Math. Soc.'' , '''6''' (1951) pp. 1–12</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Yu.V. Prokhorov, "Convergence of random processes and limit theorems in probability theory" ''Theor. Probab. Appl.'' , '''1''' (1956) pp. 157–214 ''Teor. Veroyatnost. Prilozhen.'' , '''1''' : 2 (1956) pp. 177–238</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Billingsley, "Convergence of probability measures" , Wiley (1968)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Donsker, "An invariance principle for certain probability limit theorems" ''Memoirs Amer. Math. Soc.'' , '''6''' (1951) pp. 1–12</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Yu.V. Prokhorov, "Convergence of random processes and limit theorems in probability theory" ''Theor. Probab. Appl.'' , '''1''' (1956) pp. 157–214 ''Teor. Veroyatnost. Prilozhen.'' , '''1''' : 2 (1956) pp. 177–238</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Billingsley, "Convergence of probability measures" , Wiley (1968)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.P. Breiman, "Probability" , Addison-Wesley (1968)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.P. Breiman, "Probability" , Addison-Wesley (1968)</TD></TR></table> |
Revision as of 22:13, 5 June 2020
Let $ X _ {1} , X _ {2} \dots $
be independent identically-distributed real-valued random variables with zero expectation and variance $ \sigma ^ {2} $;
consider the random polygonal line
$$ Y _ {n} ( t ) = \frac{1}{\sigma \sqrt n } \{ S _ {[ nt ] } + ( nt - [ nt ] ) X _ {[ nt ] + 1 } \} ,\ \ 0 \leq t \leq 1 , $$
where $ S _ {m} = \sum _ {i=} 1 ^ {m} X _ {i} $. If $ f $ is a real-valued continuous function on the space $ C [ 0 , 1] $ of continuous functions on $ [ 0 , 1 ] $ with the supremum norm (or only continuous everywhere except on a set of Wiener measure zero), then $ f ( Y _ {n} ) $ converges in distribution to $ f ( W ) $, where $ W $ is a Wiener random function. Thus, the limiting distribution for the $ f ( Y _ {n} ) $ does not depend on any special properties of the $ X _ {1} , X _ {2} , . . . $.
A typical scheme for the use of the invariance principle consists in finding the limiting distribution for the $ f ( Y _ {n} ) $ by finding the limiting distribution for $ f ( Y _ {n} ^ \prime ) $, where $ Y _ {n} ^ \prime $ is a random polygonal line constructed in the same way as $ Y _ {n} $ from some specially chosen sequence $ X _ {1} ^ \prime , X _ {2} ^ \prime , . . . $. For example, if
$$ f ( x ) = \sup _ {0 \leq t \leq 1 } x ( t ) , $$
then $ f $ is continuous on $ C $, and, since
$$ f ( Y _ {n} ) = \frac{1}{\sigma \sqrt n } \max _ {1 \leq m \leq n } S _ {m} , $$
one has that
$$ \frac{1}{\sigma \sqrt n } \max _ {1 \leq m \leq n } S _ {m} $$
converges in distribution to $ \sup _ {t} W ( t ) $. To find the distribution of $ \sup _ {t} W ( t ) $, the sequence $ \{ X _ {n} ^ \prime \} : $ $ {\mathsf P} \{ X _ {n} ^ \prime = 1 \} = {\mathsf P} \{ X _ {n} ^ \prime = - 1 \} = 1 / 2 $ is used, and as a result of the calculations one obtains
$$ {\mathsf P} \left \{ \sup _ { t } W ( t ) \leq a \right \} = \ \sqrt { \frac{2} \pi } \int\limits _ { 0 } ^ { a } e ^ {- u ^ {2} / 2 } du ,\ a \geq 0 . $$
References
[1] | M. Donsker, "An invariance principle for certain probability limit theorems" Memoirs Amer. Math. Soc. , 6 (1951) pp. 1–12 |
[2] | Yu.V. Prokhorov, "Convergence of random processes and limit theorems in probability theory" Theor. Probab. Appl. , 1 (1956) pp. 157–214 Teor. Veroyatnost. Prilozhen. , 1 : 2 (1956) pp. 177–238 |
[3] | P. Billingsley, "Convergence of probability measures" , Wiley (1968) |
Comments
References
[a1] | L.P. Breiman, "Probability" , Addison-Wesley (1968) |
Invariance, principle of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invariance,_principle_of&oldid=47408