Difference between revisions of "Intersection index (in homology)"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | i0520201.png | ||
+ | $#A+1 = 57 n = 0 | ||
+ | $#C+1 = 57 : ~/encyclopedia/old_files/data/I052/I.0502020 Intersection index (in homology) | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A homology invariant characterizing the algebraic (i.e. including orientation) number of points in the intersection of two subsets of complementary dimensions (in [[General position|general position]]) in a Euclidean space or in an oriented manifold. In the case of a non-oriented manifold, the coefficient ring $ R $ | |
+ | for the homology is taken to be $ \mathbf Z _ {2} $. | ||
− | + | Let $ X \supset A $, | |
+ | $ Y \supset B $ | ||
+ | be pairs of subsets in the Euclidean space $ \mathbf R ^ {n} $ | ||
+ | such that $ A \cap Y = \emptyset = X \cap B $, | ||
+ | and let $ d: ( X \times Y, ( A \times Y) \cup ( X \times B)) \rightarrow ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus 0) $ | ||
+ | be the mapping given by $ d( x, y) = x- y $. | ||
+ | The intersection index $ \xi \circ \eta $ | ||
+ | for the homology classes $ \xi \in H _ {n-} i ( X, A) $, | ||
+ | $ \eta \in H _ {i} ( Y, B) $ | ||
+ | is the element $ (- 1) ^ {i} d _ \star ( \xi \times \eta ) $. | ||
+ | Here $ d _ \star $ | ||
+ | is the induced homology mapping, while $ \xi \times \eta \in H _ {n} ( X \times Y, ( A \times Y) \cup ( X \cup B)) $ | ||
+ | is the exterior homology product of the elements $ \xi $ | ||
+ | and $ \eta $. | ||
− | + | The intersection index $ \xi \circ \eta $ | |
+ | depends only on those parts of the classes $ \xi $ | ||
+ | and $ \eta $ | ||
+ | with supports in an arbitrary small neighbourhood $ V $ | ||
+ | of the closure of the set $ X \cap Y $. | ||
+ | In particular, $ \xi \circ \eta = 0 $ | ||
+ | if $ X \cap Y = \emptyset $. | ||
+ | Also, if $ V = \cup _ {i} V _ {i} $, | ||
+ | $ V _ {i} \cap V _ {j} = \emptyset $ | ||
+ | for $ i \neq j $, | ||
+ | then the local intersection indices of $ \xi $ | ||
+ | and $ \eta $ | ||
+ | corresponding to each open set $ V _ {i} $ | ||
+ | are defined, and their sum coincides with $ \xi \circ \eta $. | ||
+ | The invariant $ \xi \circ \eta $ | ||
+ | does not change under homeomorphisms of $ \mathbf R ^ {n} $. | ||
+ | In conjunction with the previous property of locality, this enables one to determine the intersection index $ \xi \circ \eta $ | ||
+ | for compact subsets of an oriented variety. The following anti-commutative relation holds: | ||
+ | |||
+ | $$ | ||
+ | \xi \circ \eta = (- 1) ^ {i(} n- i) \eta \circ \xi . | ||
+ | $$ | ||
+ | |||
+ | If $ X $ | ||
+ | and $ Y $ | ||
+ | are vector subspaces in general position, if $ A = X\setminus 0 $, | ||
+ | $ B= Y\setminus 0 $, | ||
+ | and if $ \xi $ | ||
+ | and $ \eta $ | ||
+ | are generators of $ R = H _ {n-} i ( X, A) = H _ {i} ( Y, B) $, | ||
+ | then $ \xi \circ \eta $ | ||
+ | is a generator of $ H _ {n} ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus 0) = R $. | ||
+ | Since the choice of these generators is equivalent to the choice of an orientation in the corresponding Euclidean spaces, this makes it possible to determine the intersection index $ c \circ c ^ \prime $ | ||
+ | for two chains of complementary dimensions (including singular ones) for which $ | c | \cap | \partial c ^ \prime | = \emptyset = | c ^ \prime | \cap | \partial c | $( | ||
+ | $ | c | $ | ||
+ | is the support of the chain $ c $, | ||
+ | the boundary of which is $ \partial c $). | ||
+ | Then $ c \circ c ^ \prime = \xi \circ \eta $ | ||
+ | for certain chains $ c $ | ||
+ | and $ c ^ \prime $ | ||
+ | of the homology classes $ \xi \in H _ {n-} i ( X, A) $, | ||
+ | $ \eta \in H _ {i} ( Y, B) $, | ||
+ | $ | c | \subset X $, | ||
+ | $ | \partial c | \subset A $, | ||
+ | $ | c ^ \prime | \subset Y $, | ||
+ | $ | \partial c ^ \prime | \subset B $. | ||
The intersection index is used to describe certain duality relations in manifolds. | The intersection index is used to describe certain duality relations in manifolds. | ||
Line 13: | Line 80: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1980)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1980)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.F. Adams, "Stable homotopy and generalised homology" , Univ. Chicago Press (1974)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.F. Adams, "Stable homotopy and generalised homology" , Univ. Chicago Press (1974)</TD></TR></table> |
Latest revision as of 22:13, 5 June 2020
A homology invariant characterizing the algebraic (i.e. including orientation) number of points in the intersection of two subsets of complementary dimensions (in general position) in a Euclidean space or in an oriented manifold. In the case of a non-oriented manifold, the coefficient ring $ R $
for the homology is taken to be $ \mathbf Z _ {2} $.
Let $ X \supset A $, $ Y \supset B $ be pairs of subsets in the Euclidean space $ \mathbf R ^ {n} $ such that $ A \cap Y = \emptyset = X \cap B $, and let $ d: ( X \times Y, ( A \times Y) \cup ( X \times B)) \rightarrow ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus 0) $ be the mapping given by $ d( x, y) = x- y $. The intersection index $ \xi \circ \eta $ for the homology classes $ \xi \in H _ {n-} i ( X, A) $, $ \eta \in H _ {i} ( Y, B) $ is the element $ (- 1) ^ {i} d _ \star ( \xi \times \eta ) $. Here $ d _ \star $ is the induced homology mapping, while $ \xi \times \eta \in H _ {n} ( X \times Y, ( A \times Y) \cup ( X \cup B)) $ is the exterior homology product of the elements $ \xi $ and $ \eta $.
The intersection index $ \xi \circ \eta $ depends only on those parts of the classes $ \xi $ and $ \eta $ with supports in an arbitrary small neighbourhood $ V $ of the closure of the set $ X \cap Y $. In particular, $ \xi \circ \eta = 0 $ if $ X \cap Y = \emptyset $. Also, if $ V = \cup _ {i} V _ {i} $, $ V _ {i} \cap V _ {j} = \emptyset $ for $ i \neq j $, then the local intersection indices of $ \xi $ and $ \eta $ corresponding to each open set $ V _ {i} $ are defined, and their sum coincides with $ \xi \circ \eta $. The invariant $ \xi \circ \eta $ does not change under homeomorphisms of $ \mathbf R ^ {n} $. In conjunction with the previous property of locality, this enables one to determine the intersection index $ \xi \circ \eta $ for compact subsets of an oriented variety. The following anti-commutative relation holds:
$$ \xi \circ \eta = (- 1) ^ {i(} n- i) \eta \circ \xi . $$
If $ X $ and $ Y $ are vector subspaces in general position, if $ A = X\setminus 0 $, $ B= Y\setminus 0 $, and if $ \xi $ and $ \eta $ are generators of $ R = H _ {n-} i ( X, A) = H _ {i} ( Y, B) $, then $ \xi \circ \eta $ is a generator of $ H _ {n} ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus 0) = R $. Since the choice of these generators is equivalent to the choice of an orientation in the corresponding Euclidean spaces, this makes it possible to determine the intersection index $ c \circ c ^ \prime $ for two chains of complementary dimensions (including singular ones) for which $ | c | \cap | \partial c ^ \prime | = \emptyset = | c ^ \prime | \cap | \partial c | $( $ | c | $ is the support of the chain $ c $, the boundary of which is $ \partial c $). Then $ c \circ c ^ \prime = \xi \circ \eta $ for certain chains $ c $ and $ c ^ \prime $ of the homology classes $ \xi \in H _ {n-} i ( X, A) $, $ \eta \in H _ {i} ( Y, B) $, $ | c | \subset X $, $ | \partial c | \subset A $, $ | c ^ \prime | \subset Y $, $ | \partial c ^ \prime | \subset B $.
The intersection index is used to describe certain duality relations in manifolds.
References
[1] | A. Dold, "Lectures on algebraic topology" , Springer (1980) |
Comments
References
[a1] | J.F. Adams, "Stable homotopy and generalised homology" , Univ. Chicago Press (1974) |
Intersection index (in homology). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Intersection_index_(in_homology)&oldid=47399