Namespaces
Variants
Actions

Difference between revisions of "Intersection index (in homology)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A homology invariant characterizing the algebraic (i.e. including orientation) number of points in the intersection of two subsets of complementary dimensions (in [[General position|general position]]) in a Euclidean space or in an oriented manifold. In the case of a non-oriented manifold, the coefficient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i0520201.png" /> for the homology is taken to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i0520202.png" />.
+
<!--
 +
i0520201.png
 +
$#A+1 = 57 n = 0
 +
$#C+1 = 57 : ~/encyclopedia/old_files/data/I052/I.0502020 Intersection index (in homology)
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i0520203.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i0520204.png" /> be pairs of subsets in the Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i0520205.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i0520206.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i0520207.png" /> be the mapping given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i0520208.png" />. The intersection index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i0520209.png" /> for the homology classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202011.png" /> is the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202012.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202013.png" /> is the induced homology mapping, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202014.png" /> is the exterior homology product of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202016.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The intersection index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202017.png" /> depends only on those parts of the classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202019.png" /> with supports in an arbitrary small neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202020.png" /> of the closure of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202021.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202022.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202023.png" />. Also, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202025.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202026.png" />, then the local intersection indices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202028.png" /> corresponding to each open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202029.png" /> are defined, and their sum coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202030.png" />. The invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202031.png" /> does not change under homeomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202032.png" />. In conjunction with the previous property of locality, this enables one to determine the intersection index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202033.png" /> for compact subsets of an oriented variety. The following anti-commutative relation holds:
+
A homology invariant characterizing the algebraic (i.e. including orientation) number of points in the intersection of two subsets of complementary dimensions (in [[General position|general position]]) in a Euclidean space or in an oriented manifold. In the case of a non-oriented manifold, the coefficient ring  $  R $
 +
for the homology is taken to be  $  \mathbf Z _ {2} $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202034.png" /></td> </tr></table>
+
Let  $  X \supset A $,
 +
$  Y \supset B $
 +
be pairs of subsets in the Euclidean space  $  \mathbf R  ^ {n} $
 +
such that  $  A \cap Y = \emptyset = X \cap B $,
 +
and let  $  d: ( X \times Y, ( A \times Y) \cup ( X \times B)) \rightarrow ( \mathbf R  ^ {n} , \mathbf R  ^ {n} \setminus  0) $
 +
be the mapping given by  $  d( x, y) = x- y $.  
 +
The intersection index  $  \xi \circ \eta $
 +
for the homology classes  $  \xi \in H _ {n-} i ( X, A) $,
 +
$  \eta \in H _ {i} ( Y, B) $
 +
is the element  $  (- 1)  ^ {i} d _  \star  ( \xi \times \eta ) $.  
 +
Here  $  d _  \star  $
 +
is the induced homology mapping, while  $  \xi \times \eta \in H _ {n} ( X \times Y, ( A \times Y) \cup ( X \cup B)) $
 +
is the exterior homology product of the elements  $  \xi $
 +
and  $  \eta $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202036.png" /> are vector subspaces in general position, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202038.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202040.png" /> are generators of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202041.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202042.png" /> is a generator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202043.png" />. Since the choice of these generators is equivalent to the choice of an orientation in the corresponding Euclidean spaces, this makes it possible to determine the intersection index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202044.png" /> for two chains of complementary dimensions (including singular ones) for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202045.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202046.png" /> is the support of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202047.png" />, the boundary of which is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202048.png" />). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202049.png" /> for certain chains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202051.png" /> of the homology classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052020/i05202057.png" />.
+
The intersection index  $  \xi \circ \eta $
 +
depends only on those parts of the classes  $  \xi $
 +
and  $  \eta $
 +
with supports in an arbitrary small neighbourhood  $  V $
 +
of the closure of the set  $  X \cap Y $.
 +
In particular,  $  \xi \circ \eta = 0 $
 +
if  $  X \cap Y = \emptyset $.  
 +
Also, if  $  V = \cup _ {i} V _ {i} $,
 +
$  V _ {i} \cap V _ {j} = \emptyset $
 +
for  $  i \neq j $,
 +
then the local intersection indices of  $  \xi $
 +
and  $  \eta $
 +
corresponding to each open set  $  V _ {i} $
 +
are defined, and their sum coincides with  $  \xi \circ \eta $.  
 +
The invariant  $  \xi \circ \eta $
 +
does not change under homeomorphisms of  $  \mathbf R  ^ {n} $.  
 +
In conjunction with the previous property of locality, this enables one to determine the intersection index  $  \xi \circ \eta $
 +
for compact subsets of an oriented variety. The following anti-commutative relation holds:
 +
 
 +
$$
 +
\xi \circ \eta  =  (- 1)  ^ {i(} n- i) \eta \circ \xi .
 +
$$
 +
 
 +
If  $  X $
 +
and  $  Y $
 +
are vector subspaces in general position, if $  A = X\setminus  0 $,  
 +
$  B= Y\setminus  0 $,  
 +
and if $  \xi $
 +
and $  \eta $
 +
are generators of $  R = H _ {n-} i ( X, A) = H _ {i} ( Y, B) $,  
 +
then $  \xi \circ \eta $
 +
is a generator of $  H _ {n} ( \mathbf R  ^ {n} , \mathbf R  ^ {n} \setminus  0) = R $.  
 +
Since the choice of these generators is equivalent to the choice of an orientation in the corresponding Euclidean spaces, this makes it possible to determine the intersection index $  c \circ c  ^  \prime  $
 +
for two chains of complementary dimensions (including singular ones) for which $  | c | \cap | \partial  c  ^  \prime  | = \emptyset = | c  ^  \prime  | \cap | \partial  c | $(
 +
$  | c | $
 +
is the support of the chain $  c $,  
 +
the boundary of which is $  \partial  c $).  
 +
Then $  c \circ c  ^  \prime  = \xi \circ \eta $
 +
for certain chains $  c $
 +
and $  c  ^  \prime  $
 +
of the homology classes $  \xi \in H _ {n-} i ( X, A) $,  
 +
$  \eta \in H _ {i} ( Y, B) $,  
 +
$  | c | \subset  X $,  
 +
$  | \partial  c | \subset  A $,  
 +
$  | c  ^  \prime  | \subset  Y $,  
 +
$  | \partial  c  ^  \prime  | \subset  B $.
  
 
The intersection index is used to describe certain duality relations in manifolds.
 
The intersection index is used to describe certain duality relations in manifolds.
Line 13: Line 80:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1980)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1980)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.F. Adams,  "Stable homotopy and generalised homology" , Univ. Chicago Press  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.F. Adams,  "Stable homotopy and generalised homology" , Univ. Chicago Press  (1974)</TD></TR></table>

Latest revision as of 22:13, 5 June 2020


A homology invariant characterizing the algebraic (i.e. including orientation) number of points in the intersection of two subsets of complementary dimensions (in general position) in a Euclidean space or in an oriented manifold. In the case of a non-oriented manifold, the coefficient ring $ R $ for the homology is taken to be $ \mathbf Z _ {2} $.

Let $ X \supset A $, $ Y \supset B $ be pairs of subsets in the Euclidean space $ \mathbf R ^ {n} $ such that $ A \cap Y = \emptyset = X \cap B $, and let $ d: ( X \times Y, ( A \times Y) \cup ( X \times B)) \rightarrow ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus 0) $ be the mapping given by $ d( x, y) = x- y $. The intersection index $ \xi \circ \eta $ for the homology classes $ \xi \in H _ {n-} i ( X, A) $, $ \eta \in H _ {i} ( Y, B) $ is the element $ (- 1) ^ {i} d _ \star ( \xi \times \eta ) $. Here $ d _ \star $ is the induced homology mapping, while $ \xi \times \eta \in H _ {n} ( X \times Y, ( A \times Y) \cup ( X \cup B)) $ is the exterior homology product of the elements $ \xi $ and $ \eta $.

The intersection index $ \xi \circ \eta $ depends only on those parts of the classes $ \xi $ and $ \eta $ with supports in an arbitrary small neighbourhood $ V $ of the closure of the set $ X \cap Y $. In particular, $ \xi \circ \eta = 0 $ if $ X \cap Y = \emptyset $. Also, if $ V = \cup _ {i} V _ {i} $, $ V _ {i} \cap V _ {j} = \emptyset $ for $ i \neq j $, then the local intersection indices of $ \xi $ and $ \eta $ corresponding to each open set $ V _ {i} $ are defined, and their sum coincides with $ \xi \circ \eta $. The invariant $ \xi \circ \eta $ does not change under homeomorphisms of $ \mathbf R ^ {n} $. In conjunction with the previous property of locality, this enables one to determine the intersection index $ \xi \circ \eta $ for compact subsets of an oriented variety. The following anti-commutative relation holds:

$$ \xi \circ \eta = (- 1) ^ {i(} n- i) \eta \circ \xi . $$

If $ X $ and $ Y $ are vector subspaces in general position, if $ A = X\setminus 0 $, $ B= Y\setminus 0 $, and if $ \xi $ and $ \eta $ are generators of $ R = H _ {n-} i ( X, A) = H _ {i} ( Y, B) $, then $ \xi \circ \eta $ is a generator of $ H _ {n} ( \mathbf R ^ {n} , \mathbf R ^ {n} \setminus 0) = R $. Since the choice of these generators is equivalent to the choice of an orientation in the corresponding Euclidean spaces, this makes it possible to determine the intersection index $ c \circ c ^ \prime $ for two chains of complementary dimensions (including singular ones) for which $ | c | \cap | \partial c ^ \prime | = \emptyset = | c ^ \prime | \cap | \partial c | $( $ | c | $ is the support of the chain $ c $, the boundary of which is $ \partial c $). Then $ c \circ c ^ \prime = \xi \circ \eta $ for certain chains $ c $ and $ c ^ \prime $ of the homology classes $ \xi \in H _ {n-} i ( X, A) $, $ \eta \in H _ {i} ( Y, B) $, $ | c | \subset X $, $ | \partial c | \subset A $, $ | c ^ \prime | \subset Y $, $ | \partial c ^ \prime | \subset B $.

The intersection index is used to describe certain duality relations in manifolds.

References

[1] A. Dold, "Lectures on algebraic topology" , Springer (1980)

Comments

References

[a1] J.F. Adams, "Stable homotopy and generalised homology" , Univ. Chicago Press (1974)
How to Cite This Entry:
Intersection index (in homology). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Intersection_index_(in_homology)&oldid=47399
This article was adapted from an original article by E.G. Sklyarenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article