Difference between revisions of "Interior mapping"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | i0518401.png | ||
| + | $#A+1 = 28 n = 0 | ||
| + | $#C+1 = 28 : ~/encyclopedia/old_files/data/I051/I.0501840 Interior mapping | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A mapping $ f: X \rightarrow Y $ | |
| + | from a topological space $ X $ | ||
| + | into a topological space $ Y $ | ||
| + | such that the image of any set $ U $ | ||
| + | open in $ X $ | ||
| + | is also open in $ Y $, | ||
| + | while the inverse image $ f ^ { - 1 } ( y) $ | ||
| + | of any point $ y \in Y $ | ||
| + | is totally disconnected (i.e. does not contain connected components other than points). | ||
| − | + | Let $ F $ | |
| + | map some [[Riemann surface|Riemann surface]] $ R $ | ||
| + | into the sphere $ S ^ {2} $; | ||
| + | a homeomorphism $ T: M \rightarrow R $ | ||
| + | from an oriented surface $ M $ | ||
| + | will then induce a mapping | ||
| − | The local structure of the interior mapping | + | $$ |
| + | \widetilde{F} = F \circ T: M \rightarrow S ^ {2} , | ||
| + | $$ | ||
| + | |||
| + | which is topologically equivalent with $ F $. | ||
| + | For an analytic function $ F $ | ||
| + | and some mapping $ \widetilde{F} $ | ||
| + | to be topologically equivalent it is necessary and sufficient for $ \widetilde{F} $ | ||
| + | to be an interior mapping (then there exists a homeomorphism $ T $ | ||
| + | such that $ \widetilde{F} = F \circ T $) | ||
| + | (Stoilow's theorem). | ||
| + | |||
| + | The local structure of the interior mapping $ \widetilde{F} : M \rightarrow \mathbf R ^ {2} $ | ||
| + | may be described as follows. For any point $ a \in M $ | ||
| + | there exist a neighbourhood $ U( a) $ | ||
| + | and homeomorphisms $ T _ {1} : B \rightarrow U( a) $ | ||
| + | of the unit disc $ B = \{ {z \in \mathbf R ^ {2} } : {| z | < 1 } \} $ | ||
| + | onto $ U( a) $ | ||
| + | and $ T _ {2} : \widetilde{F} ( U( a)) \rightarrow B $ | ||
| + | such that $ T _ {2} \circ \widetilde{F} \circ T _ {1} = z ^ {n} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. [S. Stoilov] Stoilow, "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars (1938)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. [S. Stoilov] Stoilow, "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars (1938)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.T. Whyburn, "Topological analysis" , Princeton Univ. Press (1964)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.T. Whyburn, "Topological analysis" , Princeton Univ. Press (1964)</TD></TR></table> | ||
Latest revision as of 22:13, 5 June 2020
A mapping $ f: X \rightarrow Y $
from a topological space $ X $
into a topological space $ Y $
such that the image of any set $ U $
open in $ X $
is also open in $ Y $,
while the inverse image $ f ^ { - 1 } ( y) $
of any point $ y \in Y $
is totally disconnected (i.e. does not contain connected components other than points).
Let $ F $ map some Riemann surface $ R $ into the sphere $ S ^ {2} $; a homeomorphism $ T: M \rightarrow R $ from an oriented surface $ M $ will then induce a mapping
$$ \widetilde{F} = F \circ T: M \rightarrow S ^ {2} , $$
which is topologically equivalent with $ F $. For an analytic function $ F $ and some mapping $ \widetilde{F} $ to be topologically equivalent it is necessary and sufficient for $ \widetilde{F} $ to be an interior mapping (then there exists a homeomorphism $ T $ such that $ \widetilde{F} = F \circ T $) (Stoilow's theorem).
The local structure of the interior mapping $ \widetilde{F} : M \rightarrow \mathbf R ^ {2} $ may be described as follows. For any point $ a \in M $ there exist a neighbourhood $ U( a) $ and homeomorphisms $ T _ {1} : B \rightarrow U( a) $ of the unit disc $ B = \{ {z \in \mathbf R ^ {2} } : {| z | < 1 } \} $ onto $ U( a) $ and $ T _ {2} : \widetilde{F} ( U( a)) \rightarrow B $ such that $ T _ {2} \circ \widetilde{F} \circ T _ {1} = z ^ {n} $.
References
| [1] | S. [S. Stoilov] Stoilow, "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars (1938) |
Comments
References
| [a1] | G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 |
| [a2] | G.T. Whyburn, "Topological analysis" , Princeton Univ. Press (1964) |
Interior mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Interior_mapping&oldid=47388