Difference between revisions of "Integration on manifolds"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i0517701.png | ||
+ | $#A+1 = 81 n = 0 | ||
+ | $#C+1 = 81 : ~/encyclopedia/old_files/data/I051/I.0501770 Integration on manifolds | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ M $ | |
+ | be a finite-dimensional smooth manifold. Tangent spaces and such provide the global analogues of differential calculus. There is also an "integral calculus on manifolds" . Let $ \Delta _ {n} = [ 0, 1] ^ {n} \subset \mathbf R ^ {n} $ | ||
+ | be the standard $ n $- | ||
+ | cube. A singular cube in $ M $ | ||
+ | is a smooth mapping $ s: \Delta _ {k} \rightarrow M $. | ||
+ | Let $ \omega $ | ||
+ | be a $ k $- | ||
+ | form on $ M $( | ||
+ | cf. [[Differential form|Differential form]]). Then the integral of $ \omega $ | ||
+ | over a singular $ k $- | ||
+ | cube $ s $ | ||
+ | is defined as | ||
− | + | $$ \tag{a1 } | |
+ | \int\limits _ { s } \omega = \ | ||
+ | \int\limits _ {\Delta _ {k} } f , | ||
+ | $$ | ||
− | + | where $ f $ | |
+ | is the unique smooth function such that $ s ^ {*} \omega = f dx _ {1} \wedge \dots \wedge dx _ {k} $ | ||
+ | on $ \Delta _ {k} $ | ||
+ | and where on the right-hand side the ordinary Lebesgue integral is taken. A singular $ k $- | ||
+ | chain is a formal finite sum $ c = \sum n _ {i} s _ {i} $ | ||
+ | of singular $ k $- | ||
+ | cubes with coefficients in $ \mathbf Z $. | ||
+ | One defines | ||
− | + | $$ \tag{a2 } | |
+ | \int\limits _ { c } \omega = \ | ||
+ | \sum _ { i } n _ {i} \int\limits _ {s _ {i} } \omega . | ||
+ | $$ | ||
− | + | Now let $ M $ | |
+ | be oriented and let $ c = \sum n _ {i} s _ {i} $ | ||
+ | and $ c ^ \prime = \sum n _ {i} s _ {i} ^ \prime $ | ||
+ | be two singular $ k $- | ||
+ | chains such that $ s _ {i} ( \Delta _ {k} ) = s _ {i} ^ \prime ( \Delta _ {k} ) $ | ||
+ | for all $ i $ | ||
+ | and such that all the $ s _ {i} , s _ {i} ^ \prime $ | ||
+ | are orientation preserving. Then $ \int _ {c} \omega = \int _ {c ^ \prime } \omega $. | ||
+ | In particular, if the $ s _ {i} $ | ||
+ | fit together to define a piecewise-smooth $ k $- | ||
+ | dimensional submanifold $ N $ | ||
+ | of $ M $, | ||
+ | then the integral $ \int _ {N} \omega $ | ||
+ | is well-defined. | ||
− | + | Let $ d $ | |
+ | denote the exterior derivative on exterior forms (cf. [[Exterior form|Exterior form]]) and $ \partial $ | ||
+ | the (obvious) boundary operator on oriented (singular) chains. Then one has Stokes' theorem | ||
− | + | $$ \tag{a3 } | |
+ | \int\limits _ { c } d \omega = \ | ||
+ | \int\limits _ {\partial c } \omega , | ||
+ | $$ | ||
− | + | where $ \omega $ | |
+ | is a $ ( k - 1) $- | ||
+ | form and $ c $ | ||
+ | is a singular $ k $- | ||
+ | chain. This is the analogue of the fundamental theorem of calculus. | ||
− | Let | + | A particular consequence is Green's theorem: Let $ M \subset \mathbf R ^ {2} $ |
+ | be a compact $ 2 $- | ||
+ | dimensional manifold with boundary and let $ f , g: M \rightarrow \mathbf R $ | ||
+ | be differentiable. Then | ||
− | + | $$ \tag{a4 } | |
+ | \int\limits _ {\partial M } ( f dx + g dy) = \ | ||
+ | {\int\limits \int\limits } _ { M } | ||
+ | \left ( | ||
− | + | \frac{\partial g }{\partial x } | |
+ | - | ||
− | + | \frac{\partial f }{\partial y } | |
− | + | \right ) dx dy . | |
+ | $$ | ||
− | + | Let $ M $ | |
+ | now be an oriented $ n $- | ||
+ | dimensional Riemannian manifold, i.e. for each $ x \in M $ | ||
+ | an [[Orientation|orientation]] has been given on $ T _ {x} M $. | ||
+ | The volume form $ \omega _ {M} $ | ||
+ | on $ M $ | ||
+ | is now defined by requiring that $ \omega _ {M} ( x) ( v _ {1} \dots v _ {n} ) = 1 $ | ||
+ | for one (and hence each) orthonormal basis of $ T _ {x} M $ | ||
+ | in the given orientation class of $ T _ {x} M $. | ||
+ | Another consequence of the general Stokes' theorem (a3) is the divergence theorem: | ||
− | + | $$ \tag{a5 } | |
+ | \int\limits _ { M } \mathop{\rm div} \psi dV = \ | ||
+ | \int\limits _ {\partial M } \langle \psi , n \rangle dA . | ||
+ | $$ | ||
− | + | Here $ \psi $ | |
+ | is a vector field on $ \mathbf R ^ {3} $, | ||
+ | $ M $ | ||
+ | is a three-dimensional oriented manifold in $ \mathbf R ^ {3} $, | ||
+ | $ \mathop{\rm div} \psi = {\partial \psi _ {i} } / {\partial x _ {i} } $ | ||
+ | if $ \psi = \sum \psi _ {i} \partial / {\partial x _ {i} } $, | ||
+ | $ n $ | ||
+ | is an outward normal to $ \partial M $, | ||
+ | and $ dM $ | ||
+ | and $ dA $ | ||
+ | are, respectively, the volume and area elements of $ M $ | ||
+ | and $ \partial M $. | ||
+ | The [[Inner product|inner product]] is induced from the standard one in $ \mathbf R ^ {3} $. | ||
+ | |||
+ | Finally there is the classical Stokes' formula: Let $ M \subset \mathbf R ^ {3} $ | ||
+ | be an oriented two-dimensional submanifold with boundary $ \partial M $. | ||
+ | Give $ \partial M $ | ||
+ | an orientation such that together with the outward normal it gives back the orientation of $ M $. | ||
+ | Let $ s $ | ||
+ | parametrize $ \partial M $ | ||
+ | and let $ \phi $ | ||
+ | be the vector field on $ \partial M $ | ||
+ | such that $ ds ( \phi ) = 1 $ | ||
+ | everywhere. One then has the formula | ||
+ | |||
+ | $$ \tag{a6 } | ||
+ | \int\limits _ { M } \langle \mathop{\rm curl} \psi , n \rangle dA = \ | ||
+ | \int\limits _ {\partial M } \langle \psi , \phi \rangle ds , | ||
+ | $$ | ||
+ | |||
+ | where the curl of a vector field $ \psi $ | ||
+ | on $ \mathbf R ^ {3} $ | ||
+ | is defined by: | ||
+ | |||
+ | $$ \tag{a7 } | ||
+ | \mathop{\rm curl} \psi = \ | ||
+ | \left ( | ||
+ | |||
+ | \frac{\partial \psi _ {3} }{\partial x _ {2} } | ||
+ | - | ||
+ | |||
+ | \frac{\partial \psi _ {2} }{\partial x _ {3} } | ||
+ | |||
+ | \right ) | ||
+ | { | ||
+ | \frac \partial {\partial x _ {1} } | ||
+ | } + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + | ||
+ | \left ( | ||
+ | \frac{\partial \psi _ {1} }{\partial x _ {3} } | ||
+ | - | ||
+ | \frac{\partial \psi _ {3} }{\partial x _ {1} } | ||
+ | \right ) { | ||
+ | \frac \partial {\partial x _ {2} } | ||
+ | } + \left ( | ||
+ | |||
+ | \frac{\partial \psi _ {2} }{\partial x _ {1} } | ||
+ | - | ||
+ | |||
+ | \frac{\partial \psi _ {1} }{\partial x _ {2} } | ||
+ | |||
+ | \right ) { | ||
+ | \frac \partial {\partial x _ {3} } | ||
+ | } . | ||
+ | $$ | ||
All these theorems have higher-dimensional analogues. | All these theorems have higher-dimensional analogues. |
Latest revision as of 22:13, 5 June 2020
Let $ M $
be a finite-dimensional smooth manifold. Tangent spaces and such provide the global analogues of differential calculus. There is also an "integral calculus on manifolds" . Let $ \Delta _ {n} = [ 0, 1] ^ {n} \subset \mathbf R ^ {n} $
be the standard $ n $-
cube. A singular cube in $ M $
is a smooth mapping $ s: \Delta _ {k} \rightarrow M $.
Let $ \omega $
be a $ k $-
form on $ M $(
cf. Differential form). Then the integral of $ \omega $
over a singular $ k $-
cube $ s $
is defined as
$$ \tag{a1 } \int\limits _ { s } \omega = \ \int\limits _ {\Delta _ {k} } f , $$
where $ f $ is the unique smooth function such that $ s ^ {*} \omega = f dx _ {1} \wedge \dots \wedge dx _ {k} $ on $ \Delta _ {k} $ and where on the right-hand side the ordinary Lebesgue integral is taken. A singular $ k $- chain is a formal finite sum $ c = \sum n _ {i} s _ {i} $ of singular $ k $- cubes with coefficients in $ \mathbf Z $. One defines
$$ \tag{a2 } \int\limits _ { c } \omega = \ \sum _ { i } n _ {i} \int\limits _ {s _ {i} } \omega . $$
Now let $ M $ be oriented and let $ c = \sum n _ {i} s _ {i} $ and $ c ^ \prime = \sum n _ {i} s _ {i} ^ \prime $ be two singular $ k $- chains such that $ s _ {i} ( \Delta _ {k} ) = s _ {i} ^ \prime ( \Delta _ {k} ) $ for all $ i $ and such that all the $ s _ {i} , s _ {i} ^ \prime $ are orientation preserving. Then $ \int _ {c} \omega = \int _ {c ^ \prime } \omega $. In particular, if the $ s _ {i} $ fit together to define a piecewise-smooth $ k $- dimensional submanifold $ N $ of $ M $, then the integral $ \int _ {N} \omega $ is well-defined.
Let $ d $ denote the exterior derivative on exterior forms (cf. Exterior form) and $ \partial $ the (obvious) boundary operator on oriented (singular) chains. Then one has Stokes' theorem
$$ \tag{a3 } \int\limits _ { c } d \omega = \ \int\limits _ {\partial c } \omega , $$
where $ \omega $ is a $ ( k - 1) $- form and $ c $ is a singular $ k $- chain. This is the analogue of the fundamental theorem of calculus.
A particular consequence is Green's theorem: Let $ M \subset \mathbf R ^ {2} $ be a compact $ 2 $- dimensional manifold with boundary and let $ f , g: M \rightarrow \mathbf R $ be differentiable. Then
$$ \tag{a4 } \int\limits _ {\partial M } ( f dx + g dy) = \ {\int\limits \int\limits } _ { M } \left ( \frac{\partial g }{\partial x } - \frac{\partial f }{\partial y } \right ) dx dy . $$
Let $ M $ now be an oriented $ n $- dimensional Riemannian manifold, i.e. for each $ x \in M $ an orientation has been given on $ T _ {x} M $. The volume form $ \omega _ {M} $ on $ M $ is now defined by requiring that $ \omega _ {M} ( x) ( v _ {1} \dots v _ {n} ) = 1 $ for one (and hence each) orthonormal basis of $ T _ {x} M $ in the given orientation class of $ T _ {x} M $. Another consequence of the general Stokes' theorem (a3) is the divergence theorem:
$$ \tag{a5 } \int\limits _ { M } \mathop{\rm div} \psi dV = \ \int\limits _ {\partial M } \langle \psi , n \rangle dA . $$
Here $ \psi $ is a vector field on $ \mathbf R ^ {3} $, $ M $ is a three-dimensional oriented manifold in $ \mathbf R ^ {3} $, $ \mathop{\rm div} \psi = {\partial \psi _ {i} } / {\partial x _ {i} } $ if $ \psi = \sum \psi _ {i} \partial / {\partial x _ {i} } $, $ n $ is an outward normal to $ \partial M $, and $ dM $ and $ dA $ are, respectively, the volume and area elements of $ M $ and $ \partial M $. The inner product is induced from the standard one in $ \mathbf R ^ {3} $.
Finally there is the classical Stokes' formula: Let $ M \subset \mathbf R ^ {3} $ be an oriented two-dimensional submanifold with boundary $ \partial M $. Give $ \partial M $ an orientation such that together with the outward normal it gives back the orientation of $ M $. Let $ s $ parametrize $ \partial M $ and let $ \phi $ be the vector field on $ \partial M $ such that $ ds ( \phi ) = 1 $ everywhere. One then has the formula
$$ \tag{a6 } \int\limits _ { M } \langle \mathop{\rm curl} \psi , n \rangle dA = \ \int\limits _ {\partial M } \langle \psi , \phi \rangle ds , $$
where the curl of a vector field $ \psi $ on $ \mathbf R ^ {3} $ is defined by:
$$ \tag{a7 } \mathop{\rm curl} \psi = \ \left ( \frac{\partial \psi _ {3} }{\partial x _ {2} } - \frac{\partial \psi _ {2} }{\partial x _ {3} } \right ) { \frac \partial {\partial x _ {1} } } + $$
$$ + \left ( \frac{\partial \psi _ {1} }{\partial x _ {3} } - \frac{\partial \psi _ {3} }{\partial x _ {1} } \right ) { \frac \partial {\partial x _ {2} } } + \left ( \frac{\partial \psi _ {2} }{\partial x _ {1} } - \frac{\partial \psi _ {1} }{\partial x _ {2} } \right ) { \frac \partial {\partial x _ {3} } } . $$
All these theorems have higher-dimensional analogues.
References
[a1] | M. Spivak, "Calculus on manifolds" , Benjamin (1965) |
[a2] | M. Hazewinkel, "A tutorial introduction to differentiable manifolds and calculus on manifolds" W. Schiehlen (ed.) W. Wedig (ed.) , Analysis and estimation of stochastic mechanical systems , Springer (Wien) (1988) pp. 316–340 |
Integration on manifolds. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integration_on_manifolds&oldid=47384