Difference between revisions of "Integral separation condition"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | i0516401.png | ||
+ | $#A+1 = 12 n = 0 | ||
+ | $#C+1 = 12 : ~/encyclopedia/old_files/data/I051/I.0501640 Integral separation condition | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A condition on a system of linear differential equations | A condition on a system of linear differential equations | ||
− | + | $$ | |
+ | \dot{x} = A ( t) x ,\ \ | ||
+ | x \in \mathbf R ^ {n} | ||
+ | $$ | ||
− | (where | + | (where $ A $ |
+ | is a mapping $ \mathbf R \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $ | ||
+ | with $ \sup _ {t \in \mathbf R } \| A ( t) \| < \infty $), | ||
+ | requiring that the system has solutions $ x _ {i} ( t) $, | ||
+ | $ i = 1 \dots n $, | ||
+ | satisfying for certain $ a , d > 0 $ | ||
+ | the inequalities | ||
− | + | $$ | |
+ | | x _ {i} ( t) | \cdot | x _ {i} ( \tau ) | ^ {-} 1 \geq \ | ||
+ | d e ^ {a ( t - \tau ) } \cdot | ||
+ | | x _ {i-} 1 ( t) | \cdot | x _ {i-} 1 ( \tau ) | ^ {-} 1 | ||
+ | $$ | ||
− | for all | + | for all $ i = 2 \dots n $ |
+ | and all $ t \geq \tau \geq 0 $. | ||
The set of systems satisfying the integral separation condition is the interior of the set of continuity of all Lyapunov characteristic exponents (cf. [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]]) in the space of systems | The set of systems satisfying the integral separation condition is the interior of the set of continuity of all Lyapunov characteristic exponents (cf. [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]]) in the space of systems | ||
− | + | $$ | |
+ | \dot{x} = A ( t) x ,\ \ | ||
+ | \sup _ {x \in \mathbf R } \| A ( t) \| < + \infty , | ||
+ | $$ | ||
with metric | with metric | ||
− | + | $$ | |
+ | \rho ( A ( t) , B ( t) ) = \ | ||
+ | \sup _ {t \in \mathbf R } \| A ( t) - B ( t) \| . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.A. Izobov, "Linear systems of ordinary differential equations" ''J. Soviet Math.'' , '''5''' : 1 (1976) pp. 46–96 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12''' (1974) pp. 71–146</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.A. Izobov, "Linear systems of ordinary differential equations" ''J. Soviet Math.'' , '''5''' : 1 (1976) pp. 46–96 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12''' (1974) pp. 71–146</TD></TR></table> |
Latest revision as of 22:12, 5 June 2020
A condition on a system of linear differential equations
$$ \dot{x} = A ( t) x ,\ \ x \in \mathbf R ^ {n} $$
(where $ A $ is a mapping $ \mathbf R \rightarrow \mathop{\rm Hom} ( \mathbf R ^ {n} , \mathbf R ^ {n} ) $ with $ \sup _ {t \in \mathbf R } \| A ( t) \| < \infty $), requiring that the system has solutions $ x _ {i} ( t) $, $ i = 1 \dots n $, satisfying for certain $ a , d > 0 $ the inequalities
$$ | x _ {i} ( t) | \cdot | x _ {i} ( \tau ) | ^ {-} 1 \geq \ d e ^ {a ( t - \tau ) } \cdot | x _ {i-} 1 ( t) | \cdot | x _ {i-} 1 ( \tau ) | ^ {-} 1 $$
for all $ i = 2 \dots n $ and all $ t \geq \tau \geq 0 $.
The set of systems satisfying the integral separation condition is the interior of the set of continuity of all Lyapunov characteristic exponents (cf. Lyapunov characteristic exponent) in the space of systems
$$ \dot{x} = A ( t) x ,\ \ \sup _ {x \in \mathbf R } \| A ( t) \| < + \infty , $$
with metric
$$ \rho ( A ( t) , B ( t) ) = \ \sup _ {t \in \mathbf R } \| A ( t) - B ( t) \| . $$
References
[1] | N.A. Izobov, "Linear systems of ordinary differential equations" J. Soviet Math. , 5 : 1 (1976) pp. 46–96 Itogi Nauk. i Tekhn. Mat. Anal. , 12 (1974) pp. 71–146 |
Integral separation condition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_separation_condition&oldid=47382