Difference between revisions of "Integral representations of linear operators"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i1100801.png | ||
+ | $#A+1 = 79 n = 1 | ||
+ | $#C+1 = 79 : ~/encyclopedia/old_files/data/I110/I.1100080 Integral representations of linear operators | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ ( X, \Lambda, \mu ) $ | |
+ | and $ ( Y, \Sigma, \nu ) $ | ||
+ | be $ \sigma $- | ||
+ | finite measure spaces (cf. [[Measure space|Measure space]]) and let $ L _ {0} ( X, \mu ) $ | ||
+ | and $ L _ {0} ( Y, \nu ) $ | ||
+ | be the spaces of the complex-valued $ \mu $- | ||
+ | measurable functions on $ X $ | ||
+ | and the complex-valued $ \nu $- | ||
+ | measurable functions on $ Y $, | ||
+ | respectively. A linear subspace $ E = E ( X, \mu ) $ | ||
+ | of $ L _ {0} ( X, \mu ) $ | ||
+ | is called an ideal space, or a solid linear subspace, of $ L _ {0} $ | ||
+ | if $ f \in L _ {0} $, | ||
+ | $ g \in E $ | ||
+ | and $ | f | \leq | g | $, | ||
+ | $ \mu $- | ||
+ | a.e., imply $ f \in E $. | ||
+ | The classical $ L _ {p} $- | ||
+ | spaces ( $ 1 \leq p \leq \infty $), | ||
+ | the Orlicz spaces and, more generally, Banach function spaces (cf. also [[Orlicz space|Orlicz space]]; [[Banach space|Banach space]]) are typical examples of normed ideal spaces. | ||
− | + | If $ E $, | |
+ | $ F $ | ||
+ | are ideal spaces contained in $ L _ {0} ( Y, \nu ) $ | ||
+ | and $ L _ {0} ( X, \mu ) $, | ||
+ | respectively, then $ T \in {\mathcal L} ( E,F ) $, | ||
+ | the linear space of all linear operators from $ E $ | ||
+ | into $ F $, | ||
+ | is called an integral operator, kernel operator, if there exists a $ ( \mu \times \nu ) $- | ||
+ | measurable function $ T = T ( x,y ) $, | ||
+ | $ ( x,y ) \in X \times Y $, | ||
+ | such that for all $ f \in E $ | ||
+ | and $ \mu $- | ||
+ | a.e. with respect to $ x $, | ||
+ | $ ( Tf ) ( x ) = \int _ {Y} {T ( x,y ) f ( y ) } {d \nu ( y ) } $. | ||
− | + | Integral operators, also known as integral transforms, play an important role in analysis. It is a natural question to ask: Which $ T \in {\mathcal L} ( E,F ) $ | |
+ | are integral operators? J. von Neumann [[#References|[a5]]] was the first to show that for the ideal spaces $ E = F = L _ {2} ( [ 0,1 ] ) $ | ||
+ | the identity operator does not admit an integral representation. He proved, however, that a bounded self-adjoint linear operator $ T \in {\mathcal L} ( L _ {2} , L _ {2} ) $ | ||
+ | is unitarily equivalent (cf. also [[Unitarily-equivalent operators|Unitarily-equivalent operators]]) to an integral operator if and only if $ 0 $ | ||
+ | is an element of the limit spectrum of $ T $. | ||
+ | |||
+ | $ T \in {\mathcal L} ( E,F ) $ | ||
+ | is called a positive linear operator if for all $ 0 \leq f \in E $ | ||
+ | one has $ T f \geq 0 $( | ||
+ | $ \mu $- | ||
+ | a.e.). An integral operator $ T $ | ||
+ | with kernel $ T ( x,y ) $( | ||
+ | $ ( x,y ) \in X \times Y $) | ||
+ | is positive if and only if $ T ( x,y ) \geq 0 $, | ||
+ | $ ( \mu \times \nu ) $- | ||
+ | a.e.; $ T \in {\mathcal L} ( E,F ) $ | ||
+ | is called regular if $ T $ | ||
+ | maps order-bounded sets into order-bounded sets, i.e., for all $ f \in E $ | ||
+ | there exists a $ g \in F $ | ||
+ | such that for all $ h \in E $ | ||
+ | satisfying $ | h | \leq | f | $, | ||
+ | one has $ | {Th } | \leq g $; | ||
+ | $ T \in {\mathcal L} ( E,F ) $ | ||
+ | is ordered bounded if and only if $ T $ | ||
+ | can be written as the difference of two positive linear operators if and only if its modulus $ | T | $, | ||
+ | where for all $ 0 \leq f \in E $, | ||
+ | $ | T | ( f ) = \sup \{ {| {Tg } | } : {| g | \leq f } \} $, | ||
+ | is a positive linear operator mapping $ E $ | ||
+ | into $ F $. | ||
+ | |||
+ | The following theorem holds: An integral operator $ T \in {\mathcal L} ( E,F ) $ | ||
+ | is regular if and only if its modulus $ | T | $ | ||
+ | is a positive linear operator mapping $ E $ | ||
+ | into $ F $. | ||
+ | In that case, the kernel of $ | T | $ | ||
+ | is given by the modulus $ | {T ( x,y ) } | $( | ||
+ | $ ( x,y ) \in X \times Y $) | ||
+ | of the kernel of $ T $. | ||
An integral transform need not be regular, as is shown, for instance, by the [[Fourier transform|Fourier transform]] and the [[Hilbert transform|Hilbert transform]]. | An integral transform need not be regular, as is shown, for instance, by the [[Fourier transform|Fourier transform]] and the [[Hilbert transform|Hilbert transform]]. | ||
− | Integral operators can be characterized via a continuity property: | + | Integral operators can be characterized via a continuity property: $ T \in {\mathcal L} ( E,F ) $ |
+ | is a linear integral operator if and only if $ 0 \leq f _ {n} \leq f \in E $( | ||
+ | $ n = 1,2, \dots $) | ||
+ | and $ f _ {n} \rightarrow 0 $ | ||
+ | in $ \nu $- | ||
+ | measure as $ n \rightarrow \infty $ | ||
+ | imply $ Tf _ {n} \rightarrow 0 $( | ||
+ | $ \mu $- | ||
+ | a.e.) as $ n \rightarrow \infty $. | ||
− | An earlier version of this theorem for bilinear forms is due to H. Nakano [[#References|[a4]]]. For regular linear operators defined on KB-spaces (cf. also [[K-space| | + | An earlier version of this theorem for bilinear forms is due to H. Nakano [[#References|[a4]]]. For regular linear operators defined on KB-spaces (cf. also [[K-space| $ K $- |
+ | space]]), the result appeared in a slightly different form in a paper by G.Ya. Lozonovskii [[#References|[a3]]]. The present version is due to A.V. Bukhvalov [[#References|[a1]]]. A pure measure-theoretic proof and related results were given by A. Schep [[#References|[a6]]]. For details and further results see [[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.V. Bukhvalov, "A criterion for integral representability of linear operators" ''Funktsional. Anal. i Prilozhen.'' , '''9''' : 1 (1975) pp. 51 (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> "Vector lattices and integral operators" S.S. Kutateladze (ed.) , ''Mathematics and its Applications'' , '''358''' , Kluwer Acad. Publ. (1996)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.Ya. Lozanovsky, "On almost integral operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008081.png" />-spaces" ''Vestnik Leningrad Gos. Univ.'' , '''7''' (1966) pp. 35–44 (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H. Nakano, "Product spaces of semi-ordered linear spaces" ''J. Fac. Sci. Hokkaidô Univ. Ser. I'' , '''12''' : 3 (1953) pp. 163–210</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. von Neumann, "Charakterisierung des Spektrums eines Integraloperators" , ''Actualités Sc. et Industr.'' , '''229''' , Hermann (1935)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A.R. Schep, "Kernel operators" ''Proc. Kon. Nederl. Akad. Wetensch.'' , '''A 82''' (1979) pp. 39–53</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.V. Bukhvalov, "A criterion for integral representability of linear operators" ''Funktsional. Anal. i Prilozhen.'' , '''9''' : 1 (1975) pp. 51 (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> "Vector lattices and integral operators" S.S. Kutateladze (ed.) , ''Mathematics and its Applications'' , '''358''' , Kluwer Acad. Publ. (1996)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.Ya. Lozanovsky, "On almost integral operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008081.png" />-spaces" ''Vestnik Leningrad Gos. Univ.'' , '''7''' (1966) pp. 35–44 (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H. Nakano, "Product spaces of semi-ordered linear spaces" ''J. Fac. Sci. Hokkaidô Univ. Ser. I'' , '''12''' : 3 (1953) pp. 163–210</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. von Neumann, "Charakterisierung des Spektrums eines Integraloperators" , ''Actualités Sc. et Industr.'' , '''229''' , Hermann (1935)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A.R. Schep, "Kernel operators" ''Proc. Kon. Nederl. Akad. Wetensch.'' , '''A 82''' (1979) pp. 39–53</TD></TR></table> |
Revision as of 22:12, 5 June 2020
Let $ ( X, \Lambda, \mu ) $
and $ ( Y, \Sigma, \nu ) $
be $ \sigma $-
finite measure spaces (cf. Measure space) and let $ L _ {0} ( X, \mu ) $
and $ L _ {0} ( Y, \nu ) $
be the spaces of the complex-valued $ \mu $-
measurable functions on $ X $
and the complex-valued $ \nu $-
measurable functions on $ Y $,
respectively. A linear subspace $ E = E ( X, \mu ) $
of $ L _ {0} ( X, \mu ) $
is called an ideal space, or a solid linear subspace, of $ L _ {0} $
if $ f \in L _ {0} $,
$ g \in E $
and $ | f | \leq | g | $,
$ \mu $-
a.e., imply $ f \in E $.
The classical $ L _ {p} $-
spaces ( $ 1 \leq p \leq \infty $),
the Orlicz spaces and, more generally, Banach function spaces (cf. also Orlicz space; Banach space) are typical examples of normed ideal spaces.
If $ E $, $ F $ are ideal spaces contained in $ L _ {0} ( Y, \nu ) $ and $ L _ {0} ( X, \mu ) $, respectively, then $ T \in {\mathcal L} ( E,F ) $, the linear space of all linear operators from $ E $ into $ F $, is called an integral operator, kernel operator, if there exists a $ ( \mu \times \nu ) $- measurable function $ T = T ( x,y ) $, $ ( x,y ) \in X \times Y $, such that for all $ f \in E $ and $ \mu $- a.e. with respect to $ x $, $ ( Tf ) ( x ) = \int _ {Y} {T ( x,y ) f ( y ) } {d \nu ( y ) } $.
Integral operators, also known as integral transforms, play an important role in analysis. It is a natural question to ask: Which $ T \in {\mathcal L} ( E,F ) $ are integral operators? J. von Neumann [a5] was the first to show that for the ideal spaces $ E = F = L _ {2} ( [ 0,1 ] ) $ the identity operator does not admit an integral representation. He proved, however, that a bounded self-adjoint linear operator $ T \in {\mathcal L} ( L _ {2} , L _ {2} ) $ is unitarily equivalent (cf. also Unitarily-equivalent operators) to an integral operator if and only if $ 0 $ is an element of the limit spectrum of $ T $.
$ T \in {\mathcal L} ( E,F ) $ is called a positive linear operator if for all $ 0 \leq f \in E $ one has $ T f \geq 0 $( $ \mu $- a.e.). An integral operator $ T $ with kernel $ T ( x,y ) $( $ ( x,y ) \in X \times Y $) is positive if and only if $ T ( x,y ) \geq 0 $, $ ( \mu \times \nu ) $- a.e.; $ T \in {\mathcal L} ( E,F ) $ is called regular if $ T $ maps order-bounded sets into order-bounded sets, i.e., for all $ f \in E $ there exists a $ g \in F $ such that for all $ h \in E $ satisfying $ | h | \leq | f | $, one has $ | {Th } | \leq g $; $ T \in {\mathcal L} ( E,F ) $ is ordered bounded if and only if $ T $ can be written as the difference of two positive linear operators if and only if its modulus $ | T | $, where for all $ 0 \leq f \in E $, $ | T | ( f ) = \sup \{ {| {Tg } | } : {| g | \leq f } \} $, is a positive linear operator mapping $ E $ into $ F $.
The following theorem holds: An integral operator $ T \in {\mathcal L} ( E,F ) $ is regular if and only if its modulus $ | T | $ is a positive linear operator mapping $ E $ into $ F $. In that case, the kernel of $ | T | $ is given by the modulus $ | {T ( x,y ) } | $( $ ( x,y ) \in X \times Y $) of the kernel of $ T $.
An integral transform need not be regular, as is shown, for instance, by the Fourier transform and the Hilbert transform.
Integral operators can be characterized via a continuity property: $ T \in {\mathcal L} ( E,F ) $ is a linear integral operator if and only if $ 0 \leq f _ {n} \leq f \in E $( $ n = 1,2, \dots $) and $ f _ {n} \rightarrow 0 $ in $ \nu $- measure as $ n \rightarrow \infty $ imply $ Tf _ {n} \rightarrow 0 $( $ \mu $- a.e.) as $ n \rightarrow \infty $.
An earlier version of this theorem for bilinear forms is due to H. Nakano [a4]. For regular linear operators defined on KB-spaces (cf. also $ K $- space), the result appeared in a slightly different form in a paper by G.Ya. Lozonovskii [a3]. The present version is due to A.V. Bukhvalov [a1]. A pure measure-theoretic proof and related results were given by A. Schep [a6]. For details and further results see [a2].
References
[a1] | A.V. Bukhvalov, "A criterion for integral representability of linear operators" Funktsional. Anal. i Prilozhen. , 9 : 1 (1975) pp. 51 (In Russian) |
[a2] | "Vector lattices and integral operators" S.S. Kutateladze (ed.) , Mathematics and its Applications , 358 , Kluwer Acad. Publ. (1996) |
[a3] | G.Ya. Lozanovsky, "On almost integral operators in -spaces" Vestnik Leningrad Gos. Univ. , 7 (1966) pp. 35–44 (In Russian) |
[a4] | H. Nakano, "Product spaces of semi-ordered linear spaces" J. Fac. Sci. Hokkaidô Univ. Ser. I , 12 : 3 (1953) pp. 163–210 |
[a5] | J. von Neumann, "Charakterisierung des Spektrums eines Integraloperators" , Actualités Sc. et Industr. , 229 , Hermann (1935) |
[a6] | A.R. Schep, "Kernel operators" Proc. Kon. Nederl. Akad. Wetensch. , A 82 (1979) pp. 39–53 |
Integral representations of linear operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_representations_of_linear_operators&oldid=47381