Difference between revisions of "Implicative propositional calculus"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | i0503001.png | ||
+ | $#A+1 = 7 n = 0 | ||
+ | $#C+1 = 7 : ~/encyclopedia/old_files/data/I050/I.0500300 Implicative propositional calculus | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Propositional calculus|propositional calculus]] using only the primitive connective $ \supset $( | |
+ | implication). Examples of an implicative propositional calculus are the complete (or classical) implicative propositional calculus given by the axioms | ||
+ | |||
+ | $$ | ||
+ | p \supset ( q \supset p ) ,\ \ | ||
+ | ( ( p \supset q ) \supset \ | ||
+ | ( ( q \supset r ) \supset \ | ||
+ | ( p \supset r ) ) ) , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | ( ( p \supset q ) \supset p ) \supset p | ||
+ | $$ | ||
and the rules of inference: [[Modus ponens|modus ponens]] and substitution; another example is the positive implicative propositional calculus given by the axioms | and the rules of inference: [[Modus ponens|modus ponens]] and substitution; another example is the positive implicative propositional calculus given by the axioms | ||
− | + | $$ | |
+ | p \supset ( q \supset p ) ,\ \ | ||
+ | ( p \supset ( q \supset r ) ) \supset \ | ||
+ | ( ( p \supset q ) \supset \ | ||
+ | ( p \supset r ) ) | ||
+ | $$ | ||
− | and the same rules of inference. Every implicative formula, that is, a formula only containing the connective | + | and the same rules of inference. Every implicative formula, that is, a formula only containing the connective $ \supset $, |
+ | is deducible in complete (or positive) implicative propositional calculus if and only if it is deducible in classical (respectively, intuitionistic) propositional calculus. For any finite set $ V $ | ||
+ | of variables, among the formulas with variables in $ V $ | ||
+ | there is only a finite number of pairwise inequivalent ones in the positive implicative propositional calculus (see [[#References|[3]]]). There exist undecidable finitely-axiomatizable implicative propositional calculi (see [[#References|[4]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Church, "Introduction to mathematical logic" , '''1''' , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Łukasiewicz, A. Tarski, "Untersuchungen über den Aussagenkalkül" ''C.R. Soc. Sci. Letters Varsovie, Cl. III'' , '''23''' (1930) pp. 30–50</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Diego, "Sur les algèbres de Hilbert" , Gauthier-Villars (1966) ((translated from the Spanish))</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.D. Gladstone, "Some ways of constructing a propositional calculus of any required degree of unsolvability" ''Trans. Amer. Math. Soc.'' , '''118''' (1965) pp. 192–210</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Church, "Introduction to mathematical logic" , '''1''' , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Łukasiewicz, A. Tarski, "Untersuchungen über den Aussagenkalkül" ''C.R. Soc. Sci. Letters Varsovie, Cl. III'' , '''23''' (1930) pp. 30–50</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Diego, "Sur les algèbres de Hilbert" , Gauthier-Villars (1966) ((translated from the Spanish))</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.D. Gladstone, "Some ways of constructing a propositional calculus of any required degree of unsolvability" ''Trans. Amer. Math. Soc.'' , '''118''' (1965) pp. 192–210</TD></TR></table> |
Latest revision as of 22:11, 5 June 2020
A propositional calculus using only the primitive connective $ \supset $(
implication). Examples of an implicative propositional calculus are the complete (or classical) implicative propositional calculus given by the axioms
$$ p \supset ( q \supset p ) ,\ \ ( ( p \supset q ) \supset \ ( ( q \supset r ) \supset \ ( p \supset r ) ) ) , $$
$$ ( ( p \supset q ) \supset p ) \supset p $$
and the rules of inference: modus ponens and substitution; another example is the positive implicative propositional calculus given by the axioms
$$ p \supset ( q \supset p ) ,\ \ ( p \supset ( q \supset r ) ) \supset \ ( ( p \supset q ) \supset \ ( p \supset r ) ) $$
and the same rules of inference. Every implicative formula, that is, a formula only containing the connective $ \supset $, is deducible in complete (or positive) implicative propositional calculus if and only if it is deducible in classical (respectively, intuitionistic) propositional calculus. For any finite set $ V $ of variables, among the formulas with variables in $ V $ there is only a finite number of pairwise inequivalent ones in the positive implicative propositional calculus (see [3]). There exist undecidable finitely-axiomatizable implicative propositional calculi (see [4]).
References
[1] | A. Church, "Introduction to mathematical logic" , 1 , Princeton Univ. Press (1956) |
[2] | J. Łukasiewicz, A. Tarski, "Untersuchungen über den Aussagenkalkül" C.R. Soc. Sci. Letters Varsovie, Cl. III , 23 (1930) pp. 30–50 |
[3] | A. Diego, "Sur les algèbres de Hilbert" , Gauthier-Villars (1966) ((translated from the Spanish)) |
[4] | M.D. Gladstone, "Some ways of constructing a propositional calculus of any required degree of unsolvability" Trans. Amer. Math. Soc. , 118 (1965) pp. 192–210 |
Implicative propositional calculus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Implicative_propositional_calculus&oldid=47319