Difference between revisions of "Hölder space"
(ball, not sphere (translation error, probably)) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0475161.png | ||
+ | $#A+1 = 49 n = 0 | ||
+ | $#C+1 = 49 : ~/encyclopedia/old_files/data/H047/H.0407516 H\AGolder space | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Banach space|Banach space]] of bounded continuous functions $ f( x) = f( x ^ {1} \dots x ^ {n} ) $ | |
+ | defined on a set $ E $ | ||
+ | of an $ n $- | ||
+ | dimensional Euclidean space and satisfying a [[Hölder condition|Hölder condition]] on $ E $. | ||
− | + | The Hölder space $ C _ {m} ( E) $, | |
+ | where $ m \geq 0 $ | ||
+ | is an integer, consists of the functions that are $ m $ | ||
+ | times continuously differentiable on $ E $( | ||
+ | continuous for $ m = 0 $). | ||
− | < | + | The Hölder space $ C _ {m + \alpha } ( E) $, |
+ | $ 0 < \alpha \leq 1 $, | ||
+ | where $ m \geq 0 $ | ||
+ | is an integer, consists of the functions that are $ m $ | ||
+ | times continuously differentiable (continuous for $ m = 0 $) | ||
+ | and whose $ m $- | ||
+ | th derivatives satisfy the [[Hölder condition|Hölder condition]] with index $ \alpha $. | ||
− | + | For bounded $ E $ | |
+ | a norm is introduced in $ C _ {m} ( E) $ | ||
+ | and $ C _ {m + \alpha } ( E) $ | ||
+ | as follows: | ||
− | + | $$ | |
+ | | f | _ {m} = \| f, E \| _ {m} = \ | ||
+ | \sum _ {| k | = 0 } ^ { m } | ||
+ | \sup _ {x \in E } | f ^ { ( k) } ( x) |, | ||
+ | $$ | ||
− | + | $$ | |
+ | | f | _ {m + \alpha } = \| f, E \| _ {m | ||
+ | + \alpha } = | f | _ {m} + \sum _ {| k | | ||
+ | = m } \| f ^ { ( k) } , E \| _ \alpha , | ||
+ | $$ | ||
− | + | where $ k = ( k _ {1} \dots k _ {n} ) $, | |
+ | $ k _ {j} \geq 0 $ | ||
+ | is an integer, | ||
− | 1) | + | $$ |
+ | | k | = k _ {1} + \dots + k _ {n} ,\ \ | ||
+ | f ^ { ( k) } ( x) = \ | ||
− | + | \frac{\partial ^ {| k | } f ( x) }{\partial x _ {1} ^ {k _ {1} } \dots \partial x _ {n} ^ {k _ {n} } } | |
+ | . | ||
+ | $$ | ||
+ | |||
+ | The fundamental properties of Hölder spaces for a bounded connected domain ( $ \overline{E}\; $ | ||
+ | is the closure of $ E $) | ||
+ | are: | ||
+ | |||
+ | 1) $ C _ {m + \beta } ( \overline{E}\; ) $ | ||
+ | is imbedded in $ C _ {k + \alpha } ( \overline{E}\; ) $ | ||
+ | if $ 0 \leq k + \alpha \leq m + \beta $, | ||
+ | where $ k $ | ||
+ | and $ m $ | ||
+ | are integers, $ 0 < \alpha \leq 1 $, | ||
+ | $ 0 \leq \beta \leq 1 $. | ||
+ | Here $ | f | _ {k + \alpha } \leq A | f | _ {m + \beta } $ | ||
+ | and the constant $ A $ | ||
+ | is independent of $ f \in C _ {m + \beta } ( \overline{E}\; ) $. | ||
+ | |||
+ | 2) The unit ball of $ C _ {m + \beta } ( \overline{E}\; ) $ | ||
+ | is compact in $ C _ {m + \alpha } ( \overline{E}\; ) $ | ||
+ | if $ 0 < \alpha < \beta $. | ||
+ | Consequently, any bounded set of functions from $ C _ {m + \beta } ( \overline{E}\; ) $ | ||
+ | contains a sequence of functions that converges in the metric of $ C _ {m + \alpha } ( \overline{E}\; ) $ | ||
+ | to a function of $ C _ {m + \alpha } ( \overline{E}\; ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR></table> | ||
+ | ====Comments==== | ||
+ | If, in the above, $ 0 < \alpha < 1 $, | ||
+ | then $ \| f , E \| _ \alpha $ | ||
+ | is the Hölder $ \alpha $- | ||
+ | semi-norm of $ f $ | ||
+ | on $ E $, | ||
+ | i.e. | ||
+ | $$ | ||
+ | \| f , E \| _ \alpha = \sup _ {x,y \in E } \ | ||
− | + | \frac{| f( x) - f( y) | }{| x- y | ^ \alpha } | |
− | + | . | |
− | + | $$ | |
− | |||
− | See [[Hölder condition|Hölder condition]], where this norm is denoted | + | See [[Hölder condition|Hölder condition]], where this norm is denoted $ | f, E | _ \alpha $. |
Hölder spaces play a role in partial differential equations, potential theory, complex analysis, functional analysis (cf. [[Imbedding theorems|Imbedding theorems]]), etc. | Hölder spaces play a role in partial differential equations, potential theory, complex analysis, functional analysis (cf. [[Imbedding theorems|Imbedding theorems]]), etc. |
Latest revision as of 22:11, 5 June 2020
A Banach space of bounded continuous functions $ f( x) = f( x ^ {1} \dots x ^ {n} ) $
defined on a set $ E $
of an $ n $-
dimensional Euclidean space and satisfying a Hölder condition on $ E $.
The Hölder space $ C _ {m} ( E) $, where $ m \geq 0 $ is an integer, consists of the functions that are $ m $ times continuously differentiable on $ E $( continuous for $ m = 0 $).
The Hölder space $ C _ {m + \alpha } ( E) $, $ 0 < \alpha \leq 1 $, where $ m \geq 0 $ is an integer, consists of the functions that are $ m $ times continuously differentiable (continuous for $ m = 0 $) and whose $ m $- th derivatives satisfy the Hölder condition with index $ \alpha $.
For bounded $ E $ a norm is introduced in $ C _ {m} ( E) $ and $ C _ {m + \alpha } ( E) $ as follows:
$$ | f | _ {m} = \| f, E \| _ {m} = \ \sum _ {| k | = 0 } ^ { m } \sup _ {x \in E } | f ^ { ( k) } ( x) |, $$
$$ | f | _ {m + \alpha } = \| f, E \| _ {m + \alpha } = | f | _ {m} + \sum _ {| k | = m } \| f ^ { ( k) } , E \| _ \alpha , $$
where $ k = ( k _ {1} \dots k _ {n} ) $, $ k _ {j} \geq 0 $ is an integer,
$$ | k | = k _ {1} + \dots + k _ {n} ,\ \ f ^ { ( k) } ( x) = \ \frac{\partial ^ {| k | } f ( x) }{\partial x _ {1} ^ {k _ {1} } \dots \partial x _ {n} ^ {k _ {n} } } . $$
The fundamental properties of Hölder spaces for a bounded connected domain ( $ \overline{E}\; $ is the closure of $ E $) are:
1) $ C _ {m + \beta } ( \overline{E}\; ) $ is imbedded in $ C _ {k + \alpha } ( \overline{E}\; ) $ if $ 0 \leq k + \alpha \leq m + \beta $, where $ k $ and $ m $ are integers, $ 0 < \alpha \leq 1 $, $ 0 \leq \beta \leq 1 $. Here $ | f | _ {k + \alpha } \leq A | f | _ {m + \beta } $ and the constant $ A $ is independent of $ f \in C _ {m + \beta } ( \overline{E}\; ) $.
2) The unit ball of $ C _ {m + \beta } ( \overline{E}\; ) $ is compact in $ C _ {m + \alpha } ( \overline{E}\; ) $ if $ 0 < \alpha < \beta $. Consequently, any bounded set of functions from $ C _ {m + \beta } ( \overline{E}\; ) $ contains a sequence of functions that converges in the metric of $ C _ {m + \alpha } ( \overline{E}\; ) $ to a function of $ C _ {m + \alpha } ( \overline{E}\; ) $.
References
[1] | C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian) |
Comments
If, in the above, $ 0 < \alpha < 1 $, then $ \| f , E \| _ \alpha $ is the Hölder $ \alpha $- semi-norm of $ f $ on $ E $, i.e.
$$ \| f , E \| _ \alpha = \sup _ {x,y \in E } \ \frac{| f( x) - f( y) | }{| x- y | ^ \alpha } . $$
See Hölder condition, where this norm is denoted $ | f, E | _ \alpha $.
Hölder spaces play a role in partial differential equations, potential theory, complex analysis, functional analysis (cf. Imbedding theorems), etc.
Hölder space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=H%C3%B6lder_space&oldid=47306