Namespaces
Variants
Actions

Difference between revisions of "Hypergeometric function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
h0484501.png
 +
$#A+1 = 92 n = 1
 +
$#C+1 = 92 : ~/encyclopedia/old_files/data/H048/H.0408450 Hypergeometric function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A solution of a [[Hypergeometric equation|hypergeometric equation]]
 
A solution of a [[Hypergeometric equation|hypergeometric equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484501.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
z ( 1 - z) w  ^ {\prime\prime} +
 +
[ \gamma - ( \alpha + \beta + 1) z]
 +
w  ^  \prime  - \alpha \beta w  =  0.
 +
$$
  
 
A hypergeometric function can be defined with the aid of the so-called Gauss series
 
A hypergeometric function can be defined with the aid of the so-called Gauss series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484502.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
F ( \alpha , \beta ;  \gamma ; z)  = \
 +
{} _ {2} F _ {1} ( \alpha , \beta ; \gamma ; z)  = \
 +
F ( \beta , \alpha ; \gamma ; z) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484503.png" /></td> </tr></table>
+
$$
 +
= \
 +
\sum _ {n = 0 } ^  \infty 
 +
\frac{( \alpha ) _ {n} ( \beta ) _ {n} }{( \gamma ) _ {n} }
 +
 +
\frac{z  ^ {n} }{n!\ }
 +
=
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484504.png" /></td> </tr></table>
+
$$
 +
= \
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484505.png" /> are parameters which assume arbitrary real or complex values except for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484506.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484507.png" /> is a complex variable; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484508.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h0484509.png" /> is called a hypergeometric function of the first kind. The second linearly independent solution of (1),
+
\frac{\Gamma ( \gamma ) }{\Gamma ( \alpha ) \Gamma ( \beta ) }
 +
\sum
 +
_ {n = 0 } ^  \infty 
 +
\frac{\Gamma ( \alpha + n) \Gamma ( \beta +
 +
n) }{\Gamma ( \gamma + n) }
 +
 +
\frac{z  ^ {n} }{n!}
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845010.png" /></td> </tr></table>
+
where  $  \alpha , \beta , \gamma $
 +
are parameters which assume arbitrary real or complex values except for  $  \gamma = 0, - 1, - 2 ,\dots $;  
 +
$  z $
 +
is a complex variable; and  $  ( x) _ {n} \equiv x( x + 1) \dots ( x + n - 1) $.
 +
The function  $  F( \alpha , \beta ;  \gamma ; z) $
 +
is called a hypergeometric function of the first kind. The second linearly independent solution of (1),
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845011.png" /></td> </tr></table>
+
$$
 +
\Phi ( \alpha , \beta ;  \gamma ; z) =
 +
$$
 +
 
 +
$$
 +
= \
 +
 
 +
\frac{\Gamma ( \alpha - \gamma + 1) \Gamma ( \beta - \gamma + 1) }{\Gamma ( \alpha ) \Gamma ( \beta ) \Gamma ( 1 - \gamma ) }
 +
z ^ {1 - \gamma }
 +
F ( \alpha - \gamma + 1, \beta - \gamma + 1; 2 - \gamma ; z),
 +
$$
  
 
is called a hypergeometric function of the second kind.
 
is called a hypergeometric function of the second kind.
  
The series (2) is absolutely and uniformly convergent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845012.png" />; the convergence also extends over the unit circle if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845013.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845014.png" /> it converges at all points of the unit circle except <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845015.png" />. However, there exists an analytic continuation of the hypergeometric function (2) to the exterior <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845016.png" /> of the unit disc with the slit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845017.png" /> [[#References|[1]]]. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845018.png" /> is a univalent analytic function in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845019.png" />-plane with slit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845020.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845021.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845022.png" /> are zero or negative integers, the series (2) terminates after a finite number of terms, and the hypergeometric function is a polynomial in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845023.png" />.
+
The series (2) is absolutely and uniformly convergent if $  | z | < 1 $;  
 +
the convergence also extends over the unit circle if $  \mathop{\rm Re} ( \alpha + \beta - \gamma ) < 0 $;  
 +
if $  0 \leq  \mathop{\rm Re} ( \alpha + \beta - \gamma ) < 1 $
 +
it converges at all points of the unit circle except $  z = 1 $.  
 +
However, there exists an analytic continuation of the hypergeometric function (2) to the exterior $  | z | > 1 $
 +
of the unit disc with the slit $  ( 1, \infty ) $[[#References|[1]]]. The function $  F ( \alpha , \beta ;  \gamma ;  z ) $
 +
is a univalent analytic function in the complex $  z $-
 +
plane with slit $  ( 1, \infty ) $.  
 +
If $  \alpha $
 +
or $  \beta $
 +
are zero or negative integers, the series (2) terminates after a finite number of terms, and the hypergeometric function is a polynomial in $  z $.
 +
 
 +
If  $  \gamma = - n $,
 +
$  n = 0, 1 \dots $
 +
the hypergeometric function is not defined, but
 +
 
 +
$$
 +
\lim\limits _ {\gamma \rightarrow - n } \
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845025.png" /> the hypergeometric function is not defined, but
+
\frac{F ( \alpha , \beta ;  \gamma ;  z) }{F ( \gamma ) }
 +
=
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845026.png" /></td> </tr></table>
+
$$
 +
= \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845027.png" /></td> </tr></table>
+
\frac{( \alpha ) _ {n + 1 }  ( \beta ) _ {n + 1 }  }{( n + 1)! }
 +
z ^
 +
{n + 1 } F ( \alpha + n + 1, \beta + n + 1; n + 2; z).
 +
$$
  
 
Elementary relations. The six functions
 
Elementary relations. The six functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845028.png" /></td> </tr></table>
+
$$
 +
F ( \alpha \pm  1, \beta ; \gamma ; z),\ \
 +
F ( \alpha , \beta \pm  1; \gamma ;  z) \ \
 +
F ( \alpha , \beta ;  \gamma \pm  1;  z)
 +
$$
  
are said to be contiguous to the hypergeometric function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845029.png" />. There exists a linear relationship between that function and any two functions which are contiguous to it. For instance, C.F. Gauss [[#References|[2]]], [[#References|[3]]] was the first to find 15 formulas of the type
+
are said to be contiguous to the hypergeometric function $  F ( \alpha , \beta ;  \gamma ;  z ) $.  
 +
There exists a linear relationship between that function and any two functions which are contiguous to it. For instance, C.F. Gauss [[#References|[2]]], [[#References|[3]]] was the first to find 15 formulas of the type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845030.png" /></td> </tr></table>
+
$$
 +
\gamma F ( \alpha , \beta - 1; \gamma ; z) +
 +
( \alpha - \beta ) zF ( \alpha , \beta ;  \gamma + 1; z) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845031.png" /></td> </tr></table>
+
$$
 +
= \
 +
\gamma F ( \alpha - 1, \beta ; \gamma ; z).
 +
$$
  
The associated functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845033.png" /> are integers, can be obtained by iterated application of Gauss' relations. The following differentiation formulas apply:
+
The associated functions $  F ( \alpha + m , \beta + n ;  \gamma + l ;  z) $,
 +
where $  m, n, l $
 +
are integers, can be obtained by iterated application of Gauss' relations. The following differentiation formulas apply:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845034.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{d  ^ {n} }{dz  ^ {n} }
 +
F ( \alpha , \beta ;  \gamma ; z)  = \
 +
 
 +
\frac{( \alpha ) _ {n} ( \beta ) _ {n} }{( \gamma ) _ {n} }
 +
 
 +
F ( \alpha + n, \beta + n; \gamma + n; z).
 +
$$
  
 
Equation (1) has 24 solutions of the form
 
Equation (1) has 24 solutions of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845035.png" /></td> </tr></table>
+
$$
 +
z  ^  \rho  ( 1 - z)  ^  \sigma
 +
F ( \alpha  ^  \prime  , \beta  ^  \prime  ; \gamma  ^  \prime  ; z  ^  \prime  ),
 +
$$
 +
 
 +
where  $  \rho $,
 +
$  \sigma $,
 +
$  \alpha  ^  \prime  $,
 +
$  \beta  ^  \prime  $,
 +
and  $  \gamma  ^  \prime  $
 +
are linear functions of  $  \alpha $,
 +
$  \beta $
 +
and  $  \gamma $;  
 +
and  $  z $
 +
and  $  z  ^  \prime  $
 +
are connected by a bilinear transformation. Any three solutions are linearly dependent [[#References|[2]]]. There exist square, cubic and higher-order transformations [[#References|[2]]]–[[#References|[5]]].
 +
 
 +
Principal integral representations. If  $  \mathop{\rm Re}  \gamma > \mathop{\rm Re}  \beta > 0 $
 +
and  $  |  \mathop{\rm arg}  ( 1 - x) | < \pi $,
 +
Euler's formula
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845039.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845040.png" /> are linear functions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845043.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845045.png" /> are connected by a bilinear transformation. Any three solutions are linearly dependent [[#References|[2]]]. There exist square, cubic and higher-order transformations [[#References|[2]]]–[[#References|[5]]].
+
$$ \tag{3 }
 +
F ( \alpha , \beta ;  \gamma ; z) =
 +
$$
  
Principal integral representations. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845047.png" />, Euler's formula
+
$$
 +
= \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845048.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
\frac{\Gamma ( \gamma ) }{\Gamma ( \beta ) \Gamma ( \gamma
 +
- \beta ) }
 +
\int\limits _ { 0 } ^ { 1 }  t ^ {\beta - 1 } ( 1 - t) ^ {\gamma - \beta - 1 } ( 1 - tz) ^ {- \alpha }  dt
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845049.png" /></td> </tr></table>
+
holds. By expanding  $  ( 1 - tz) ^ {- \alpha } $
 +
into a binomial series and using contour integrals for the beta-function, other integral representations can be obtained [[#References|[2]]]. The integral (3) and other similar formulas defining an analytic function of  $  z $
 +
which is single-valued throughout the  $  z $-
 +
plane can also be used as analytic continuations of  $  F ( \alpha , \beta ; \gamma ; z) $
 +
into the domain  $  |  \mathop{\rm arg}  (- z) | < \pi $.  
 +
Other analytic continuations also exist [[#References|[1]]], [[#References|[2]]].
  
holds. By expanding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845050.png" /> into a binomial series and using contour integrals for the beta-function, other integral representations can be obtained [[#References|[2]]]. The integral (3) and other similar formulas defining an analytic function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845051.png" /> which is single-valued throughout the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845052.png" />-plane can also be used as analytic continuations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845053.png" /> into the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845054.png" />. Other analytic continuations also exist [[#References|[1]]], [[#References|[2]]].
+
The asymptotic behaviour of hypergeometric functions for large values of  $  | z | $
 +
is completely described by formulas yielding analytic continuations in a neighbourhood of the point  $  z = \infty $[[#References|[1]]], [[#References|[2]]], [[#References|[3]]]. If  $  \alpha $,
 +
$  \beta $
 +
and  $  z $
 +
are given and  $  | \gamma | $
 +
is sufficiently large,  $  |  \mathop{\rm arg}  \gamma | < ( \pi - \epsilon ) $,
 +
$  \epsilon > 0 $,
 +
then, if  $  | z | < 1 $:
  
The asymptotic behaviour of hypergeometric functions for large values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845055.png" /> is completely described by formulas yielding analytic continuations in a neighbourhood of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845056.png" /> [[#References|[1]]], [[#References|[2]]], [[#References|[3]]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845059.png" /> are given and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845060.png" /> is sufficiently large, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845062.png" />, then, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845063.png" />:
+
$$
 +
F ( \alpha , \beta ;  \gamma ;  z)  = \
 +
\sum _ {k = 0 } ^ { n }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845064.png" /></td> </tr></table>
+
\frac{( \alpha ) _ {k} ( \beta ) _ {k} }{( \gamma ) _ {k} }
  
A similar expression is obtained for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845065.png" />.
+
\frac{z  ^ {k} }{k!}
 +
+
 +
O ( | \gamma | ^ {- n + 1 } ).
 +
$$
  
For fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845068.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845069.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845070.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845072.png" />,
+
A similar expression is obtained for  $  | z | > 1 $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845073.png" /></td> </tr></table>
+
For fixed  $  \alpha $,
 +
$  \gamma $
 +
and  $  z $,
 +
$  \gamma \neq 0, - 1, - 2 \dots $
 +
$  0 < | z | < 1 $,
 +
and  $  \beta \rightarrow \infty $,
 +
- 3 \pi /2 < \mathop{\rm arg}  \beta z < \pi /2 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845074.png" /></td> </tr></table>
+
$$
 +
F ( \alpha , \beta ;  \gamma ; z)  = \
 +
F \left ( \alpha , \beta ; \gamma ; \
 +
 
 +
\frac{\beta z } \beta
 +
\right ) =
 +
$$
 +
 
 +
$$
 +
= \
 +
\left [ \sum _ {n = 0 } ^  \infty 
 +
\frac{( \alpha ) _ {n} (
 +
\beta ) _ {n} }{( \gamma ) _ {n} n! }
 +
\right ]  [ 1 + O ( | \beta |  ^ {-} 1 )].
 +
$$
  
 
See also [[#References|[2]]], [[#References|[5]]], [[#References|[6]]].
 
See also [[#References|[2]]], [[#References|[5]]], [[#References|[6]]].
Line 71: Line 228:
 
Representation of functions by hypergeometric functions. The elementary functions:
 
Representation of functions by hypergeometric functions. The elementary functions:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845075.png" /></td> </tr></table>
+
$$
 +
( 1 + z)  ^ {n}  = \
 +
F (- n, 1; 1; - z),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845076.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm ln} 
 +
\frac{1 + z }{1 - z }
 +
  = 2zF \left ( {
 +
\frac{1}{2}
 +
} , 1; {
 +
\frac{3}{2}
 +
} ; z  ^ {2} \right ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845077.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm ln}  ( 1 + z)  = zF ( 1, 1; 2; - z),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845078.png" /></td> </tr></table>
+
$$
 +
e  ^ {z}  = \lim\limits _ {b \rightarrow \infty }  F \left ( 1, b; 1; {
 +
\frac{z}{b}
 +
} \right ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845079.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm arc}  \sin  z  = zF \left ( {
 +
\frac{1}{2}
 +
} ,\
 +
{
 +
\frac{1}{2}
 +
} ; {
 +
\frac{3}{2}
 +
} ; z  ^ {2} \right ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845080.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm arc}  \mathop{\rm tan}  z  = zF \left ( {
 +
\frac{1}{2}
 +
} , 1; {
 +
\frac{3}{2}
 +
} ; - z  ^ {2} \right ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845081.png" /></td> </tr></table>
+
$$
 +
\sin  nz  = n  \sin  z  F \left (
 +
\frac{1 + n }{2}
 +
,
 +
{
 +
\frac{1 - n }{2}
 +
} ; {
 +
\frac{3}{2}
 +
} ; \sin  ^ {2}  z \right ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845082.png" /></td> </tr></table>
+
$$
 +
\cos  nz  = F \left ( {
 +
\frac{1}{2}
 +
} n, - {
 +
\frac{1}{2}
 +
} n; {
 +
\frac{1}{2}
 +
} ; \sin  ^ {2}  z \right ) .
 +
$$
  
 
The complete elliptic integrals of the first and second kinds (cf. [[Elliptic integral|Elliptic integral]]):
 
The complete elliptic integrals of the first and second kinds (cf. [[Elliptic integral|Elliptic integral]]):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845083.png" /></td> </tr></table>
+
$$
 +
K ( z)  = {
 +
\frac \pi {2}
 +
} F
 +
\left ( {
 +
\frac{1}{2}
 +
} , {
 +
\frac{1}{2}
 +
} ; 1; z  ^ {2} \right ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845084.png" /></td> </tr></table>
+
$$
 +
E ( z)  = {
 +
\frac \pi {2}
 +
} F \left ( - {
 +
\frac{1}{2}
 +
} , {
 +
\frac{1}{2}
 +
} ; 1; z  ^ {2} \right ) .
 +
$$
  
 
The adjoint [[Legendre functions|Legendre functions]]:
 
The adjoint [[Legendre functions|Legendre functions]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845085.png" /></td> </tr></table>
+
$$
 +
P _ {n}  ^ {m} ( z)  = \
 +
 
 +
\frac{( z + 1) ^ {m / 2 } }{( z - 1) ^ {m / 2 } }
 +
 
 +
{
 +
\frac{1}{\Gamma ( 1 - m) }
 +
} F
 +
\left ( - n, n + 1; 1 - m; {
 +
\frac{1 - z }{2}
 +
} \right ) .
 +
$$
  
 
The [[Chebyshev polynomials|Chebyshev polynomials]]:
 
The [[Chebyshev polynomials|Chebyshev polynomials]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845086.png" /></td> </tr></table>
+
$$
 +
T _ {n} ( z)  = F \left (
 +
- n, n; {
 +
\frac{1}{2}
 +
} ; {
 +
\frac{1 - z }{2}
 +
} \right ) .
 +
$$
  
 
The [[Legendre polynomials|Legendre polynomials]]:
 
The [[Legendre polynomials|Legendre polynomials]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845087.png" /></td> </tr></table>
+
$$
 +
P _ {n} ( z)  = F \left (
 +
- n, n + 1; 1; {
 +
\frac{1 - z }{2}
 +
} \right ) .
 +
$$
  
 
The [[Ultraspherical polynomials|ultraspherical polynomials]]:
 
The [[Ultraspherical polynomials|ultraspherical polynomials]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845088.png" /></td> </tr></table>
+
$$
 +
{n! over {(} 2a) _ {n} }
 +
C _ {n}  ^ {(} a) ( z)  = F \left (
 +
- n, n + 2a; a + {
 +
\frac{1}{2}
 +
} ; {
 +
\frac{1 - z }{2}
 +
} \right ) .
 +
$$
  
 
The [[Jacobi polynomials|Jacobi polynomials]]:
 
The [[Jacobi polynomials|Jacobi polynomials]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845089.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{n! }{( a + 1) _ {n} }
 +
 
 +
P _ {n} ^ {( a, b) } ( z)  = F \left (
 +
- n, a + 1 + b + n; a + 1; {
 +
\frac{1 - z }{2}
 +
} \right ) .
 +
$$
  
 
Generalizations of hypergeometric functions. The generalized hypergeometric function
 
Generalizations of hypergeometric functions. The generalized hypergeometric function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845090.png" /></td> </tr></table>
+
$$
 +
{} _ {p} F _ {q} ( \alpha _ {1} \dots \alpha _ {p} ; \
 +
\gamma _ {1} \dots \gamma _ {q} ; z)  = \
 +
\sum _ {n = 0 } ^  \infty 
 +
{
 +
\frac{1}{n!}
 +
}
  
is said to be the solution of the hypergeometric equation of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845091.png" /> [[#References|[2]]]. There are also other generalizations of hypergeometric functions, such as generalizations to include the case of several variables [[#References|[2]]].
+
\frac{( \alpha _ {1} ) _ {n} \dots ( \alpha _ {p} ) _ {n} }{( \gamma _ {1} ) _ {n} \dots ( \gamma _ {q} ) _ {n} }
 +
z  ^ {n}
 +
$$
 +
 
 +
is said to be the solution of the hypergeometric equation of order $  q + 1 $[[#References|[2]]]. There are also other generalizations of hypergeometric functions, such as generalizations to include the case of several variables [[#References|[2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.N. Lebedev,  "Special functions and their applications" , Prentice-Hall  (1965)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Bateman (ed.)  A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''1. The gamma function. The hypergeometric functions. Legendre functions''' , McGraw-Hill  (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.S. Gradshtein,  I.M. Ryzhik,  "Table of integrals, series and products" , Acad. Press  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.E. Kummer,  "Ueber die hypergeometrische Reihe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845092.png" />"  ''J. Reine Angew. Math.'' , '''15'''  (1836)  pp. 39–83; 127–172</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Segun,  M. Abramowitz,  "Handbook of mathematical functions" , ''Appl. Math. Ser.'' , '''55''' , Nat. Bur. Standards  (1970)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.L. Lebedev,  R.M. Fedorova,  "Handbook of mathematical tables" , Moscow  (1956)  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  N.M. Burunova,  "Handbook of mathematical tables" , Moscow  (1959)  (In Russian)  (Supplement I)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  A.A. Fletcher,  J.C.P. Miller,  L. Rosenhead,  L.J. Comrie,  "An index of mathematical tables" , '''1–2''' , Oxford Univ. Press  (1962)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.N. Lebedev,  "Special functions and their applications" , Prentice-Hall  (1965)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Bateman (ed.)  A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''1. The gamma function. The hypergeometric functions. Legendre functions''' , McGraw-Hill  (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.S. Gradshtein,  I.M. Ryzhik,  "Table of integrals, series and products" , Acad. Press  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.E. Kummer,  "Ueber die hypergeometrische Reihe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845092.png" />"  ''J. Reine Angew. Math.'' , '''15'''  (1836)  pp. 39–83; 127–172</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Segun,  M. Abramowitz,  "Handbook of mathematical functions" , ''Appl. Math. Ser.'' , '''55''' , Nat. Bur. Standards  (1970)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.L. Lebedev,  R.M. Fedorova,  "Handbook of mathematical tables" , Moscow  (1956)  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  N.M. Burunova,  "Handbook of mathematical tables" , Moscow  (1959)  (In Russian)  (Supplement I)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  A.A. Fletcher,  J.C.P. Miller,  L. Rosenhead,  L.J. Comrie,  "An index of mathematical tables" , '''1–2''' , Oxford Univ. Press  (1962)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
To the list of functions representable by hypergeometric functions the Jacobi functions should be added:
 
To the list of functions representable by hypergeometric functions the Jacobi functions should be added:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048450/h04845093.png" /></td> </tr></table>
+
$$
 +
\phi _  \lambda  ^ {( \alpha , \beta ) } ( z)  = \
 +
F \left (
 +
{
 +
\frac{\alpha + \beta + 1 + i \lambda }{2}
 +
} ,\
 +
{
 +
\frac{\alpha + \beta + 1 - i \lambda }{2}
 +
} ; \
 +
\alpha + 1; - \sinh  ^ {2}  z \right ) ,
 +
$$
  
 
cf. [[#References|[a2]]].
 
cf. [[#References|[a2]]].

Revision as of 22:11, 5 June 2020


A solution of a hypergeometric equation

$$ \tag{1 } z ( 1 - z) w ^ {\prime\prime} + [ \gamma - ( \alpha + \beta + 1) z] w ^ \prime - \alpha \beta w = 0. $$

A hypergeometric function can be defined with the aid of the so-called Gauss series

$$ \tag{2 } F ( \alpha , \beta ; \gamma ; z) = \ {} _ {2} F _ {1} ( \alpha , \beta ; \gamma ; z) = \ F ( \beta , \alpha ; \gamma ; z) = $$

$$ = \ \sum _ {n = 0 } ^ \infty \frac{( \alpha ) _ {n} ( \beta ) _ {n} }{( \gamma ) _ {n} } \frac{z ^ {n} }{n!\ } = $$

$$ = \ \frac{\Gamma ( \gamma ) }{\Gamma ( \alpha ) \Gamma ( \beta ) } \sum _ {n = 0 } ^ \infty \frac{\Gamma ( \alpha + n) \Gamma ( \beta + n) }{\Gamma ( \gamma + n) } \frac{z ^ {n} }{n!} , $$

where $ \alpha , \beta , \gamma $ are parameters which assume arbitrary real or complex values except for $ \gamma = 0, - 1, - 2 ,\dots $; $ z $ is a complex variable; and $ ( x) _ {n} \equiv x( x + 1) \dots ( x + n - 1) $. The function $ F( \alpha , \beta ; \gamma ; z) $ is called a hypergeometric function of the first kind. The second linearly independent solution of (1),

$$ \Phi ( \alpha , \beta ; \gamma ; z) = $$

$$ = \ \frac{\Gamma ( \alpha - \gamma + 1) \Gamma ( \beta - \gamma + 1) }{\Gamma ( \alpha ) \Gamma ( \beta ) \Gamma ( 1 - \gamma ) } z ^ {1 - \gamma } F ( \alpha - \gamma + 1, \beta - \gamma + 1; 2 - \gamma ; z), $$

is called a hypergeometric function of the second kind.

The series (2) is absolutely and uniformly convergent if $ | z | < 1 $; the convergence also extends over the unit circle if $ \mathop{\rm Re} ( \alpha + \beta - \gamma ) < 0 $; if $ 0 \leq \mathop{\rm Re} ( \alpha + \beta - \gamma ) < 1 $ it converges at all points of the unit circle except $ z = 1 $. However, there exists an analytic continuation of the hypergeometric function (2) to the exterior $ | z | > 1 $ of the unit disc with the slit $ ( 1, \infty ) $[1]. The function $ F ( \alpha , \beta ; \gamma ; z ) $ is a univalent analytic function in the complex $ z $- plane with slit $ ( 1, \infty ) $. If $ \alpha $ or $ \beta $ are zero or negative integers, the series (2) terminates after a finite number of terms, and the hypergeometric function is a polynomial in $ z $.

If $ \gamma = - n $, $ n = 0, 1 \dots $ the hypergeometric function is not defined, but

$$ \lim\limits _ {\gamma \rightarrow - n } \ \frac{F ( \alpha , \beta ; \gamma ; z) }{F ( \gamma ) } = $$

$$ = \ \frac{( \alpha ) _ {n + 1 } ( \beta ) _ {n + 1 } }{( n + 1)! } z ^ {n + 1 } F ( \alpha + n + 1, \beta + n + 1; n + 2; z). $$

Elementary relations. The six functions

$$ F ( \alpha \pm 1, \beta ; \gamma ; z),\ \ F ( \alpha , \beta \pm 1; \gamma ; z) \ \ F ( \alpha , \beta ; \gamma \pm 1; z) $$

are said to be contiguous to the hypergeometric function $ F ( \alpha , \beta ; \gamma ; z ) $. There exists a linear relationship between that function and any two functions which are contiguous to it. For instance, C.F. Gauss [2], [3] was the first to find 15 formulas of the type

$$ \gamma F ( \alpha , \beta - 1; \gamma ; z) + ( \alpha - \beta ) zF ( \alpha , \beta ; \gamma + 1; z) = $$

$$ = \ \gamma F ( \alpha - 1, \beta ; \gamma ; z). $$

The associated functions $ F ( \alpha + m , \beta + n ; \gamma + l ; z) $, where $ m, n, l $ are integers, can be obtained by iterated application of Gauss' relations. The following differentiation formulas apply:

$$ \frac{d ^ {n} }{dz ^ {n} } F ( \alpha , \beta ; \gamma ; z) = \ \frac{( \alpha ) _ {n} ( \beta ) _ {n} }{( \gamma ) _ {n} } F ( \alpha + n, \beta + n; \gamma + n; z). $$

Equation (1) has 24 solutions of the form

$$ z ^ \rho ( 1 - z) ^ \sigma F ( \alpha ^ \prime , \beta ^ \prime ; \gamma ^ \prime ; z ^ \prime ), $$

where $ \rho $, $ \sigma $, $ \alpha ^ \prime $, $ \beta ^ \prime $, and $ \gamma ^ \prime $ are linear functions of $ \alpha $, $ \beta $ and $ \gamma $; and $ z $ and $ z ^ \prime $ are connected by a bilinear transformation. Any three solutions are linearly dependent [2]. There exist square, cubic and higher-order transformations [2][5].

Principal integral representations. If $ \mathop{\rm Re} \gamma > \mathop{\rm Re} \beta > 0 $ and $ | \mathop{\rm arg} ( 1 - x) | < \pi $, Euler's formula

$$ \tag{3 } F ( \alpha , \beta ; \gamma ; z) = $$

$$ = \ \frac{\Gamma ( \gamma ) }{\Gamma ( \beta ) \Gamma ( \gamma - \beta ) } \int\limits _ { 0 } ^ { 1 } t ^ {\beta - 1 } ( 1 - t) ^ {\gamma - \beta - 1 } ( 1 - tz) ^ {- \alpha } dt $$

holds. By expanding $ ( 1 - tz) ^ {- \alpha } $ into a binomial series and using contour integrals for the beta-function, other integral representations can be obtained [2]. The integral (3) and other similar formulas defining an analytic function of $ z $ which is single-valued throughout the $ z $- plane can also be used as analytic continuations of $ F ( \alpha , \beta ; \gamma ; z) $ into the domain $ | \mathop{\rm arg} (- z) | < \pi $. Other analytic continuations also exist [1], [2].

The asymptotic behaviour of hypergeometric functions for large values of $ | z | $ is completely described by formulas yielding analytic continuations in a neighbourhood of the point $ z = \infty $[1], [2], [3]. If $ \alpha $, $ \beta $ and $ z $ are given and $ | \gamma | $ is sufficiently large, $ | \mathop{\rm arg} \gamma | < ( \pi - \epsilon ) $, $ \epsilon > 0 $, then, if $ | z | < 1 $:

$$ F ( \alpha , \beta ; \gamma ; z) = \ \sum _ {k = 0 } ^ { n } \frac{( \alpha ) _ {k} ( \beta ) _ {k} }{( \gamma ) _ {k} } \frac{z ^ {k} }{k!} + O ( | \gamma | ^ {- n + 1 } ). $$

A similar expression is obtained for $ | z | > 1 $.

For fixed $ \alpha $, $ \gamma $ and $ z $, $ \gamma \neq 0, - 1, - 2 \dots $ $ 0 < | z | < 1 $, and $ \beta \rightarrow \infty $, $ - 3 \pi /2 < \mathop{\rm arg} \beta z < \pi /2 $,

$$ F ( \alpha , \beta ; \gamma ; z) = \ F \left ( \alpha , \beta ; \gamma ; \ \frac{\beta z } \beta \right ) = $$

$$ = \ \left [ \sum _ {n = 0 } ^ \infty \frac{( \alpha ) _ {n} ( \beta ) _ {n} }{( \gamma ) _ {n} n! } \right ] [ 1 + O ( | \beta | ^ {-} 1 )]. $$

See also [2], [5], [6].

Representation of functions by hypergeometric functions. The elementary functions:

$$ ( 1 + z) ^ {n} = \ F (- n, 1; 1; - z), $$

$$ \mathop{\rm ln} \frac{1 + z }{1 - z } = 2zF \left ( { \frac{1}{2} } , 1; { \frac{3}{2} } ; z ^ {2} \right ) , $$

$$ \mathop{\rm ln} ( 1 + z) = zF ( 1, 1; 2; - z), $$

$$ e ^ {z} = \lim\limits _ {b \rightarrow \infty } F \left ( 1, b; 1; { \frac{z}{b} } \right ) , $$

$$ \mathop{\rm arc} \sin z = zF \left ( { \frac{1}{2} } ,\ { \frac{1}{2} } ; { \frac{3}{2} } ; z ^ {2} \right ) , $$

$$ \mathop{\rm arc} \mathop{\rm tan} z = zF \left ( { \frac{1}{2} } , 1; { \frac{3}{2} } ; - z ^ {2} \right ) , $$

$$ \sin nz = n \sin z F \left ( \frac{1 + n }{2} , { \frac{1 - n }{2} } ; { \frac{3}{2} } ; \sin ^ {2} z \right ) , $$

$$ \cos nz = F \left ( { \frac{1}{2} } n, - { \frac{1}{2} } n; { \frac{1}{2} } ; \sin ^ {2} z \right ) . $$

The complete elliptic integrals of the first and second kinds (cf. Elliptic integral):

$$ K ( z) = { \frac \pi {2} } F \left ( { \frac{1}{2} } , { \frac{1}{2} } ; 1; z ^ {2} \right ) , $$

$$ E ( z) = { \frac \pi {2} } F \left ( - { \frac{1}{2} } , { \frac{1}{2} } ; 1; z ^ {2} \right ) . $$

The adjoint Legendre functions:

$$ P _ {n} ^ {m} ( z) = \ \frac{( z + 1) ^ {m / 2 } }{( z - 1) ^ {m / 2 } } { \frac{1}{\Gamma ( 1 - m) } } F \left ( - n, n + 1; 1 - m; { \frac{1 - z }{2} } \right ) . $$

The Chebyshev polynomials:

$$ T _ {n} ( z) = F \left ( - n, n; { \frac{1}{2} } ; { \frac{1 - z }{2} } \right ) . $$

The Legendre polynomials:

$$ P _ {n} ( z) = F \left ( - n, n + 1; 1; { \frac{1 - z }{2} } \right ) . $$

The ultraspherical polynomials:

$$ {n! over {(} 2a) _ {n} } C _ {n} ^ {(} a) ( z) = F \left ( - n, n + 2a; a + { \frac{1}{2} } ; { \frac{1 - z }{2} } \right ) . $$

The Jacobi polynomials:

$$ \frac{n! }{( a + 1) _ {n} } P _ {n} ^ {( a, b) } ( z) = F \left ( - n, a + 1 + b + n; a + 1; { \frac{1 - z }{2} } \right ) . $$

Generalizations of hypergeometric functions. The generalized hypergeometric function

$$ {} _ {p} F _ {q} ( \alpha _ {1} \dots \alpha _ {p} ; \ \gamma _ {1} \dots \gamma _ {q} ; z) = \ \sum _ {n = 0 } ^ \infty { \frac{1}{n!} } \frac{( \alpha _ {1} ) _ {n} \dots ( \alpha _ {p} ) _ {n} }{( \gamma _ {1} ) _ {n} \dots ( \gamma _ {q} ) _ {n} } z ^ {n} $$

is said to be the solution of the hypergeometric equation of order $ q + 1 $[2]. There are also other generalizations of hypergeometric functions, such as generalizations to include the case of several variables [2].

References

[1] N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian)
[2] H. Bateman (ed.) A. Erdélyi (ed.) , Higher transcendental functions , 1. The gamma function. The hypergeometric functions. Legendre functions , McGraw-Hill (1953)
[3] I.S. Gradshtein, I.M. Ryzhik, "Table of integrals, series and products" , Acad. Press (1980) (Translated from Russian)
[4] E.E. Kummer, "Ueber die hypergeometrische Reihe " J. Reine Angew. Math. , 15 (1836) pp. 39–83; 127–172
[5] A. Segun, M. Abramowitz, "Handbook of mathematical functions" , Appl. Math. Ser. , 55 , Nat. Bur. Standards (1970)
[6] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952)
[7] A.L. Lebedev, R.M. Fedorova, "Handbook of mathematical tables" , Moscow (1956) (In Russian)
[8] N.M. Burunova, "Handbook of mathematical tables" , Moscow (1959) (In Russian) (Supplement I)
[9] A.A. Fletcher, J.C.P. Miller, L. Rosenhead, L.J. Comrie, "An index of mathematical tables" , 1–2 , Oxford Univ. Press (1962)

Comments

To the list of functions representable by hypergeometric functions the Jacobi functions should be added:

$$ \phi _ \lambda ^ {( \alpha , \beta ) } ( z) = \ F \left ( { \frac{\alpha + \beta + 1 + i \lambda }{2} } ,\ { \frac{\alpha + \beta + 1 - i \lambda }{2} } ; \ \alpha + 1; - \sinh ^ {2} z \right ) , $$

cf. [a2].

An important generalization is given by the basic hypergeometric functions, cf. [a1].

References

[a1] G. Gasper, M. Rahman, "Basic hypergeometric series" , Cambridge Univ. Press (1989)
[a2] T.H. Koornwinder, "Jacobi functions and analysis on noncompact semisimple Lie groups" R.A. Askey (ed.) T.H. Koornwinder (ed.) W. Schempp (ed.) , Special functions: group theoretical aspects and applications , Reidel (1984) pp. 1–85
How to Cite This Entry:
Hypergeometric function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hypergeometric_function&oldid=47298
This article was adapted from an original article by E.A. Chistova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article