Difference between revisions of "Hopf fibration"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0479801.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/H047/H.0407980 Hopf fibration | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A locally trivial [[Fibration|fibration]] $ f: S ^ {2n - 1 } \rightarrow S ^ {n} $ | |
+ | for $ n = 2, 4, 8 $. | ||
+ | This is one of the earliest examples of locally trivial fibrations, introduced by H. Hopf in [[#References|[1]]]. These mappings induce trivial mappings in homology and cohomology; however, they are not homotopic to the null mapping, which follows from the fact that their [[Hopf invariant|Hopf invariant]] is non-trivial. The creation of the mappings requires the so-called Hopf construction. | ||
− | + | Let $ X \star Y $ | |
+ | be the [[Join|join]] of two spaces $ X $ | ||
+ | and $ Y $, | ||
+ | which has natural coordinates $ \langle x, t, y\rangle $, | ||
+ | where $ x \in X $, | ||
+ | $ t \in [ 0, 1] $, | ||
+ | $ y \in Y $. | ||
+ | Here, for example, $ X \star S ^ {0} = SX $, | ||
+ | where $ SX $ | ||
+ | is the [[Suspension|suspension]] of $ X $. | ||
+ | The Hopf construction $ \mathfrak H $ | ||
+ | associates with a mapping $ f: X \times Y \rightarrow Z $ | ||
+ | the mapping $ \mathfrak H ( f ): X \star Y \rightarrow SZ $ | ||
+ | given by $ \mathfrak H ( f ) \langle x, t, y\rangle = \langle f ( x, y), t \rangle $. | ||
− | + | Suppose that mappings $ \mu _ {n} : S ^ {n - 1 } \times S ^ {n - 1 } \rightarrow S ^ {n - 1 } $ | |
+ | are defined for $ n = 2, 4, 8 $ | ||
+ | by means of multiplications: in the complex numbers for $ n = 2 $, | ||
+ | in the quaternions for $ n = 4 $, | ||
+ | and in the Cayley numbers for $ n = 8 $. | ||
+ | Then $ S ^ {n - 1 } \star S ^ {n - 1 } = S ^ {2n - 1 } $, | ||
+ | and the Hopf mapping is defined as | ||
− | Sometimes the Hopf fibration is defined as the mapping | + | $$ |
+ | \mathfrak H _ {n} = \ | ||
+ | \mathfrak H ( \mu _ {n} ): \ | ||
+ | S ^ {2n - 1 } \rightarrow S ^ {n} . | ||
+ | $$ | ||
+ | |||
+ | The Hopf mapping $ \mathfrak H _ {n} $, | ||
+ | $ n = 2, 4, 8 $, | ||
+ | is a locally trivial fibration with fibre $ S ^ {n - 1 } $. | ||
+ | If $ f: S ^ {n - 1 } \times S ^ {n - 1 } \rightarrow S ^ {n - 1 } $ | ||
+ | is a mapping of bidegree $ ( d _ {1} , d _ {2} ) $, | ||
+ | then the Hopf invariant of the mapping $ \mathfrak H ( f ) $ | ||
+ | is $ d _ {1} d _ {2} $. | ||
+ | In particular, the Hopf invariant of the Hopf fibration is 1. | ||
+ | |||
+ | Sometimes the Hopf fibration is defined as the mapping $ f: S ^ {2n + 1 } \rightarrow \mathbf C P ^ {n} $ | ||
+ | given by the formula $ ( z _ {0} \dots z _ {n} ) \rightarrow [ z _ {0} : \dots : z _ {n} ] $, | ||
+ | $ z _ {i} \in \mathbf C $. | ||
+ | This mapping is a locally trivial fibration with fibre $ S ^ {1} $. | ||
+ | For $ n = 1 $ | ||
+ | one obtains the classical Hopf fibration $ f: S ^ {3} \rightarrow S ^ {2} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hopf, "Ueber die Abbildungen von Sphären niedriger Dimension" ''Fund. Math.'' , '''25''' (1935) pp. 427–440</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hopf, "Ueber die Abbildungen von Sphären niedriger Dimension" ''Fund. Math.'' , '''25''' (1935) pp. 427–440</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> |
Latest revision as of 22:11, 5 June 2020
A locally trivial fibration $ f: S ^ {2n - 1 } \rightarrow S ^ {n} $
for $ n = 2, 4, 8 $.
This is one of the earliest examples of locally trivial fibrations, introduced by H. Hopf in [1]. These mappings induce trivial mappings in homology and cohomology; however, they are not homotopic to the null mapping, which follows from the fact that their Hopf invariant is non-trivial. The creation of the mappings requires the so-called Hopf construction.
Let $ X \star Y $ be the join of two spaces $ X $ and $ Y $, which has natural coordinates $ \langle x, t, y\rangle $, where $ x \in X $, $ t \in [ 0, 1] $, $ y \in Y $. Here, for example, $ X \star S ^ {0} = SX $, where $ SX $ is the suspension of $ X $. The Hopf construction $ \mathfrak H $ associates with a mapping $ f: X \times Y \rightarrow Z $ the mapping $ \mathfrak H ( f ): X \star Y \rightarrow SZ $ given by $ \mathfrak H ( f ) \langle x, t, y\rangle = \langle f ( x, y), t \rangle $.
Suppose that mappings $ \mu _ {n} : S ^ {n - 1 } \times S ^ {n - 1 } \rightarrow S ^ {n - 1 } $ are defined for $ n = 2, 4, 8 $ by means of multiplications: in the complex numbers for $ n = 2 $, in the quaternions for $ n = 4 $, and in the Cayley numbers for $ n = 8 $. Then $ S ^ {n - 1 } \star S ^ {n - 1 } = S ^ {2n - 1 } $, and the Hopf mapping is defined as
$$ \mathfrak H _ {n} = \ \mathfrak H ( \mu _ {n} ): \ S ^ {2n - 1 } \rightarrow S ^ {n} . $$
The Hopf mapping $ \mathfrak H _ {n} $, $ n = 2, 4, 8 $, is a locally trivial fibration with fibre $ S ^ {n - 1 } $. If $ f: S ^ {n - 1 } \times S ^ {n - 1 } \rightarrow S ^ {n - 1 } $ is a mapping of bidegree $ ( d _ {1} , d _ {2} ) $, then the Hopf invariant of the mapping $ \mathfrak H ( f ) $ is $ d _ {1} d _ {2} $. In particular, the Hopf invariant of the Hopf fibration is 1.
Sometimes the Hopf fibration is defined as the mapping $ f: S ^ {2n + 1 } \rightarrow \mathbf C P ^ {n} $ given by the formula $ ( z _ {0} \dots z _ {n} ) \rightarrow [ z _ {0} : \dots : z _ {n} ] $, $ z _ {i} \in \mathbf C $. This mapping is a locally trivial fibration with fibre $ S ^ {1} $. For $ n = 1 $ one obtains the classical Hopf fibration $ f: S ^ {3} \rightarrow S ^ {2} $.
References
[1] | H. Hopf, "Ueber die Abbildungen von Sphären niedriger Dimension" Fund. Math. , 25 (1935) pp. 427–440 |
[2] | D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) |
Hopf fibration. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hopf_fibration&oldid=47269