Namespaces
Variants
Actions

Difference between revisions of "Hessian of a function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471601.png" />''
+
<!--
 +
h0471601.png
 +
$#A+1 = 14 n = 0
 +
$#C+1 = 14 : ~/encyclopedia/old_files/data/H047/H.0407160 Hessian of a function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
'' $  f $''
  
 
The quadratic form
 
The quadratic form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471602.png" /></td> </tr></table>
+
$$
 +
H ( x)  = \
 +
\sum _ {i = 1 } ^ { n }  \sum _ {j = 1 } ^ { n }
 +
a _ {ij} x _ {i} x _ {j} ,
 +
$$
  
 
or
 
or
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471603.png" /></td> </tr></table>
+
$$
 +
H ( z)  = \
 +
\sum _ {i = 1 } ^ { n }  \sum _ {j = 1 } ^ { n }
 +
a _ {ij} z _ {i} \overline{z}\; _ {j} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471604.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471605.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471606.png" /> is given on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471607.png" />-dimensional real space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471608.png" /> (or on the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h0471609.png" />) with coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h04716010.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h04716011.png" />). Introduced in 1844 by O. Hesse. With the aid of a local coordinate system this definition is transferred to functions defined on a real manifold of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h04716012.png" /> (or on a complex space), at critical points of the functions. In both cases the Hessian is a quadratic form given on the tangent space and is independent of the choice of coordinates. In [[Morse theory|Morse theory]] the Hessian is used to define the concepts of a (non-)degenerate critical point, the Morse form and the Bott form. In complex analysis the Hessian is used in the definition of a pseudo-convex space (cf. [[Pseudo-convex and pseudo-concave|Pseudo-convex and pseudo-concave]]) and of a [[Plurisubharmonic function|plurisubharmonic function]].
+
where $  a _ {ij} = \partial  ^ {2} f ( p)/ \partial  x _ {i} \partial  x _ {j} $(
 +
or $  \partial  ^ {2} f ( p)/ \partial  z _ {i} \partial  \overline{z}\; _ {j} $)  
 +
and $  f $
 +
is given on the $  n $-
 +
dimensional real space $  \mathbf R  ^ {n} $(
 +
or on the complex space $  \mathbf C  ^ {n} $)  
 +
with coordinates $  x _ {1} \dots x _ {n} $(
 +
or $  z _ {1} \dots z _ {n} $).  
 +
Introduced in 1844 by O. Hesse. With the aid of a local coordinate system this definition is transferred to functions defined on a real manifold of class $  C  ^ {2} $(
 +
or on a complex space), at critical points of the functions. In both cases the Hessian is a quadratic form given on the tangent space and is independent of the choice of coordinates. In [[Morse theory|Morse theory]] the Hessian is used to define the concepts of a (non-)degenerate critical point, the Morse form and the Bott form. In complex analysis the Hessian is used in the definition of a pseudo-convex space (cf. [[Pseudo-convex and pseudo-concave|Pseudo-convex and pseudo-concave]]) and of a [[Plurisubharmonic function|plurisubharmonic function]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.M. Postnikov,  "Introduction to Morse theory" , Moscow  (1971)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.C. Gunning,  H. Rossi,  "Analytic functions of several complex variables" , Prentice-Hall  (1965)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.M. Postnikov,  "Introduction to Morse theory" , Moscow  (1971)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  R.C. Gunning,  H. Rossi,  "Analytic functions of several complex variables" , Prentice-Hall  (1965)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
One usually calls the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h04716013.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047160/h04716014.png" /> the complex Hessian.
+
One usually calls the form $  H ( z) $
 +
on $  \mathbf C  ^ {n} $
 +
the complex Hessian.
  
 
If the Hessian of a real-valued function is a positive (semi-) definite form, then the function is convex; similarly, if the complex Hessian of a function is a positive (semi-) definite form, then the function is plurisubharmonic.
 
If the Hessian of a real-valued function is a positive (semi-) definite form, then the function is convex; similarly, if the complex Hessian of a function is a positive (semi-) definite form, then the function is plurisubharmonic.

Revision as of 22:10, 5 June 2020


$ f $

The quadratic form

$$ H ( x) = \ \sum _ {i = 1 } ^ { n } \sum _ {j = 1 } ^ { n } a _ {ij} x _ {i} x _ {j} , $$

or

$$ H ( z) = \ \sum _ {i = 1 } ^ { n } \sum _ {j = 1 } ^ { n } a _ {ij} z _ {i} \overline{z}\; _ {j} , $$

where $ a _ {ij} = \partial ^ {2} f ( p)/ \partial x _ {i} \partial x _ {j} $( or $ \partial ^ {2} f ( p)/ \partial z _ {i} \partial \overline{z}\; _ {j} $) and $ f $ is given on the $ n $- dimensional real space $ \mathbf R ^ {n} $( or on the complex space $ \mathbf C ^ {n} $) with coordinates $ x _ {1} \dots x _ {n} $( or $ z _ {1} \dots z _ {n} $). Introduced in 1844 by O. Hesse. With the aid of a local coordinate system this definition is transferred to functions defined on a real manifold of class $ C ^ {2} $( or on a complex space), at critical points of the functions. In both cases the Hessian is a quadratic form given on the tangent space and is independent of the choice of coordinates. In Morse theory the Hessian is used to define the concepts of a (non-)degenerate critical point, the Morse form and the Bott form. In complex analysis the Hessian is used in the definition of a pseudo-convex space (cf. Pseudo-convex and pseudo-concave) and of a plurisubharmonic function.

References

[1] M.M. Postnikov, "Introduction to Morse theory" , Moscow (1971) (In Russian)
[2] R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965)

Comments

One usually calls the form $ H ( z) $ on $ \mathbf C ^ {n} $ the complex Hessian.

If the Hessian of a real-valued function is a positive (semi-) definite form, then the function is convex; similarly, if the complex Hessian of a function is a positive (semi-) definite form, then the function is plurisubharmonic.

References

[a1] S.G. Krantz, "Function theory of several complex variables" , Wiley (1982) pp. Chapt. 3
How to Cite This Entry:
Hessian of a function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hessian_of_a_function&oldid=47222
This article was adapted from an original article by L.D. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article