Difference between revisions of "Hellinger integral"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0469001.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/H046/H.0406900 Hellinger integral | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An integral of Riemann type of a [[Set function|set function]] $ f $. | |
+ | If $ ( X, \mu ) $ | ||
+ | is a space with a finite, non-negative, non-singular measure; if $ f ( E) $, | ||
+ | $ E \subset X $, | ||
+ | is a totally-additive function with $ f ( E) = 0 $ | ||
+ | for $ \mu E = 0 $; | ||
+ | and if $ \delta = \{ E _ {n} \} _ {1} ^ {N} $ | ||
+ | is a partition of $ X $, | ||
+ | then | ||
− | + | $$ | |
+ | S _ \delta = \ | ||
+ | \sum _ {n = 1 } ^ { N } | ||
− | + | \frac{f ^ { 2 } ( E _ {n} ) }{\mu E _ {n} } | |
− | + | $$ | |
− | + | and the Hellinger integral of $ f ( E) $ | |
+ | with respect to $ X $ | ||
+ | is defined as | ||
− | E. Hellinger in [[#References|[1]]] defined the integral for | + | $$ |
+ | \int\limits _ { X } | ||
+ | |||
+ | \frac{f ^ { 2 } ( dE) }{d \mu } | ||
+ | = \ | ||
+ | \sup _ \delta \ | ||
+ | S _ \delta , | ||
+ | $$ | ||
+ | |||
+ | provided that this supremum is finite. Hellinger's integral can also be regarded as the limit over a directed set of partitions: $ \delta _ {1} < \delta _ {2} $ | ||
+ | if $ \delta _ {2} $ | ||
+ | is a subdivision of $ \delta _ {1} $. | ||
+ | |||
+ | If $ \phi : X \rightarrow \mathbf R $ | ||
+ | is a summable function such that $ f ( E) $ | ||
+ | is the [[Lebesgue integral|Lebesgue integral]] $ \int _ {E} \phi d \mu $, | ||
+ | then the Hellinger integral can be expressed in terms of the Lebesgue integral: | ||
+ | |||
+ | $$ | ||
+ | \int\limits _ { X } | ||
+ | |||
+ | \frac{f ^ { 2 } ( dE) }{d \mu } | ||
+ | = \ | ||
+ | \int\limits _ { X } | ||
+ | \phi ^ {2} d \mu . | ||
+ | $$ | ||
+ | |||
+ | E. Hellinger in [[#References|[1]]] defined the integral for $ X = [ a, b] $ | ||
+ | in terms of point functions. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hellinger, "Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen" ''J. Reine Angew. Math.'' , '''136''' (1909) pp. 210–271</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''5''' , Addison-Wesley (1964) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hellinger, "Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen" ''J. Reine Angew. Math.'' , '''136''' (1909) pp. 210–271</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''5''' , Addison-Wesley (1964) (Translated from Russian)</TD></TR></table> |
Latest revision as of 22:10, 5 June 2020
An integral of Riemann type of a set function $ f $.
If $ ( X, \mu ) $
is a space with a finite, non-negative, non-singular measure; if $ f ( E) $,
$ E \subset X $,
is a totally-additive function with $ f ( E) = 0 $
for $ \mu E = 0 $;
and if $ \delta = \{ E _ {n} \} _ {1} ^ {N} $
is a partition of $ X $,
then
$$ S _ \delta = \ \sum _ {n = 1 } ^ { N } \frac{f ^ { 2 } ( E _ {n} ) }{\mu E _ {n} } $$
and the Hellinger integral of $ f ( E) $ with respect to $ X $ is defined as
$$ \int\limits _ { X } \frac{f ^ { 2 } ( dE) }{d \mu } = \ \sup _ \delta \ S _ \delta , $$
provided that this supremum is finite. Hellinger's integral can also be regarded as the limit over a directed set of partitions: $ \delta _ {1} < \delta _ {2} $ if $ \delta _ {2} $ is a subdivision of $ \delta _ {1} $.
If $ \phi : X \rightarrow \mathbf R $ is a summable function such that $ f ( E) $ is the Lebesgue integral $ \int _ {E} \phi d \mu $, then the Hellinger integral can be expressed in terms of the Lebesgue integral:
$$ \int\limits _ { X } \frac{f ^ { 2 } ( dE) }{d \mu } = \ \int\limits _ { X } \phi ^ {2} d \mu . $$
E. Hellinger in [1] defined the integral for $ X = [ a, b] $ in terms of point functions.
References
[1] | E. Hellinger, "Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen" J. Reine Angew. Math. , 136 (1909) pp. 210–271 |
[2] | V.I. Smirnov, "A course of higher mathematics" , 5 , Addison-Wesley (1964) (Translated from Russian) |
Hellinger integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hellinger_integral&oldid=47207