Difference between revisions of "Hellinger distance"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0468901.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/H046/H.0406890 Hellinger distance | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A distance between probability measures, expressed in terms of the [[Hellinger integral|Hellinger integral]]. Suppose that on a measurable space $ ( \mathfrak X , {\mathcal B} ) $ | |
+ | a family of probability measures $ \{ {\mathsf P} _ \theta \} $, | ||
+ | $ \theta \in \Theta $, | ||
+ | is given that are all absolutely continuous relative to some $ \sigma $- | ||
+ | finite measure $ \mu $ | ||
+ | on $ {\mathcal B} $. | ||
− | + | The Hellinger distance between two measures $ {\mathsf P} _ {\theta _ {1} } $ | |
+ | and $ {\mathsf P} _ {\theta _ {2} } $( | ||
+ | $ \theta _ {1} , \theta _ {2} \in \Theta $) | ||
+ | is defined by the formula | ||
+ | |||
+ | $$ | ||
+ | r ( \theta _ {1} , \theta _ {2} ) = \ | ||
+ | \{ 2 [ 1 - H ( \theta _ {1} , \theta _ {2} )] \} ^ {1/2\ } = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | \left \{ \int\limits _ { \mathfrak X } \left [ \sqrt { | ||
+ | \frac{d {\mathsf P} _ {\theta _ {1} } }{d \mu } | ||
+ | } - \sqrt { | ||
+ | \frac{d {\mathsf P} _ {\theta _ {2} } }{d \mu } | ||
+ | } \right ] ^ {2} d \mu \right \} ^ {1/2} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | H ( \theta _ {1} , \theta _ {2} ) = \ | ||
+ | \int\limits _ { \mathfrak X } | ||
+ | \sqrt { | ||
+ | \frac{d {\mathsf P} _ {\theta _ {1} } }{d \mu } | ||
+ | } | ||
+ | \sqrt { | ||
+ | \frac{d {\mathsf P} _ {\theta _ {2} } }{d \mu } | ||
+ | } d \mu | ||
+ | $$ | ||
− | is the Hellinger integral. The Hellinger distance does not depend on the choice of the measure | + | is the Hellinger integral. The Hellinger distance does not depend on the choice of the measure $ \mu $ |
+ | and has the following properties: | ||
− | 1) | + | 1) $ 0 \leq r ( \theta _ {1} , \theta _ {2} ) \leq \sqrt 2 $; |
− | 2) | + | 2) $ r ( \theta _ {1} , \theta _ {2} ) = \sqrt 2 $ |
+ | if and only if the measures $ {\mathsf P} _ {\theta _ {1} } $ | ||
+ | and $ {\mathsf P} _ {\theta _ {2} } $ | ||
+ | are mutually singular; | ||
− | 3) | + | 3) $ r ( \theta _ {1} , \theta _ {2} ) = 0 $ |
+ | if and only if $ {\mathsf P} _ {\theta _ {1} } = {\mathsf P} _ {\theta _ {2} } $. | ||
Let | Let | ||
− | + | $$ | |
+ | \| {\mathsf P} _ {\theta _ {1} } - | ||
+ | {\mathsf P} _ {\theta _ {2} } \| = \ | ||
+ | \sup _ {B \in {\mathcal B} } \ | ||
+ | | {\mathsf P} _ {\theta _ {1} } ( B) - | ||
+ | {\mathsf P} _ {\theta _ {2} } ( B) | = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | { | ||
+ | \frac{1}{2} | ||
+ | } \int\limits _ { \mathfrak X } \left | | ||
+ | \frac{d {\mathsf P} _ {\theta _ {1} } }{d \mu } | ||
+ | - | ||
+ | \frac{d {\mathsf P} _ {\theta _ {2} } }{d \mu } | ||
+ | \right | d \mu | ||
+ | $$ | ||
− | be the distance in variation between the measures | + | be the distance in variation between the measures $ {\mathsf P} _ {\theta _ {1} } $ |
+ | and $ {\mathsf P} _ {\theta _ {2} } $. | ||
+ | Then | ||
− | + | $$ | |
+ | { | ||
+ | \frac{1}{2} | ||
+ | } r ^ {2} ( \theta _ {1} , \theta _ {2} ) \leq \ | ||
+ | \| {\mathsf P} _ {\theta _ {1} } - | ||
+ | {\mathsf P} _ {\theta _ {2} } \| \leq \ | ||
+ | r ( \theta _ {1} , \theta _ {2} ). | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H.H. Kuo, "Gaussian measures on Banach spaces" , Springer (1975)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.M. Zolotarev, "Properties and relations of certain types of metrics" ''Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk. USSR'' , '''87''' (1979) pp. 18–35; 206–212 (In Russian) (English summary)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H.H. Kuo, "Gaussian measures on Banach spaces" , Springer (1975)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.M. Zolotarev, "Properties and relations of certain types of metrics" ''Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk. USSR'' , '''87''' (1979) pp. 18–35; 206–212 (In Russian) (English summary)</TD></TR></table> |
Latest revision as of 22:10, 5 June 2020
A distance between probability measures, expressed in terms of the Hellinger integral. Suppose that on a measurable space $ ( \mathfrak X , {\mathcal B} ) $
a family of probability measures $ \{ {\mathsf P} _ \theta \} $,
$ \theta \in \Theta $,
is given that are all absolutely continuous relative to some $ \sigma $-
finite measure $ \mu $
on $ {\mathcal B} $.
The Hellinger distance between two measures $ {\mathsf P} _ {\theta _ {1} } $ and $ {\mathsf P} _ {\theta _ {2} } $( $ \theta _ {1} , \theta _ {2} \in \Theta $) is defined by the formula
$$ r ( \theta _ {1} , \theta _ {2} ) = \ \{ 2 [ 1 - H ( \theta _ {1} , \theta _ {2} )] \} ^ {1/2\ } = $$
$$ = \ \left \{ \int\limits _ { \mathfrak X } \left [ \sqrt { \frac{d {\mathsf P} _ {\theta _ {1} } }{d \mu } } - \sqrt { \frac{d {\mathsf P} _ {\theta _ {2} } }{d \mu } } \right ] ^ {2} d \mu \right \} ^ {1/2} , $$
where
$$ H ( \theta _ {1} , \theta _ {2} ) = \ \int\limits _ { \mathfrak X } \sqrt { \frac{d {\mathsf P} _ {\theta _ {1} } }{d \mu } } \sqrt { \frac{d {\mathsf P} _ {\theta _ {2} } }{d \mu } } d \mu $$
is the Hellinger integral. The Hellinger distance does not depend on the choice of the measure $ \mu $ and has the following properties:
1) $ 0 \leq r ( \theta _ {1} , \theta _ {2} ) \leq \sqrt 2 $;
2) $ r ( \theta _ {1} , \theta _ {2} ) = \sqrt 2 $ if and only if the measures $ {\mathsf P} _ {\theta _ {1} } $ and $ {\mathsf P} _ {\theta _ {2} } $ are mutually singular;
3) $ r ( \theta _ {1} , \theta _ {2} ) = 0 $ if and only if $ {\mathsf P} _ {\theta _ {1} } = {\mathsf P} _ {\theta _ {2} } $.
Let
$$ \| {\mathsf P} _ {\theta _ {1} } - {\mathsf P} _ {\theta _ {2} } \| = \ \sup _ {B \in {\mathcal B} } \ | {\mathsf P} _ {\theta _ {1} } ( B) - {\mathsf P} _ {\theta _ {2} } ( B) | = $$
$$ = \ { \frac{1}{2} } \int\limits _ { \mathfrak X } \left | \frac{d {\mathsf P} _ {\theta _ {1} } }{d \mu } - \frac{d {\mathsf P} _ {\theta _ {2} } }{d \mu } \right | d \mu $$
be the distance in variation between the measures $ {\mathsf P} _ {\theta _ {1} } $ and $ {\mathsf P} _ {\theta _ {2} } $. Then
$$ { \frac{1}{2} } r ^ {2} ( \theta _ {1} , \theta _ {2} ) \leq \ \| {\mathsf P} _ {\theta _ {1} } - {\mathsf P} _ {\theta _ {2} } \| \leq \ r ( \theta _ {1} , \theta _ {2} ). $$
References
[1] | H.H. Kuo, "Gaussian measures on Banach spaces" , Springer (1975) |
[2] | H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) |
[3] | I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian) |
[4] | V.M. Zolotarev, "Properties and relations of certain types of metrics" Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk. USSR , 87 (1979) pp. 18–35; 206–212 (In Russian) (English summary) |
Hellinger distance. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hellinger_distance&oldid=47206