Difference between revisions of "Hausdorff summation method"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0467401.png | ||
+ | $#A+1 = 31 n = 0 | ||
+ | $#C+1 = 31 : ~/encyclopedia/old_files/data/H046/H.0406740 Hausdorff summation method | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A summation method for series of numbers or functions, introduced by F. Hausdorff [[#References|[1]]]; it is defined as follows. A sequence $ s = \{ s _ {n} \} $ | |
+ | is subjected in succession to three linear matrix transformations: | ||
− | + | $$ | |
+ | t = \delta s,\ \ | ||
+ | \tau = \mu t,\ \ | ||
+ | \sigma = \delta t, | ||
+ | $$ | ||
− | + | where $ \delta $ | |
+ | is the transformation by means of the triangular matrix $ \{ \delta _ {nk} \} $: | ||
− | + | $$ | |
+ | \delta _ {nk} = \ | ||
+ | \left \{ | ||
− | + | \begin{array}{ll} | |
+ | (- 1) ^ {k} \left ( \begin{array}{c} | ||
+ | n \\ | ||
+ | k | ||
+ | \end{array} | ||
+ | \right ) , & k \leq n, \\ | ||
+ | 0 , & k > n; \\ | ||
+ | \end{array} | ||
− | + | $$ | |
− | + | and $ \mu $ | |
+ | is the diagonal transformation by means the diagonal matrix $ \| \mu _ {nk} \| $: | ||
− | + | $$ | |
+ | \mu _ {nk} = \ | ||
+ | \left \{ | ||
+ | |||
+ | \begin{array}{ll} | ||
+ | \mu _ {n} , & k = n, \\ | ||
+ | 0, & k \neq n, \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right .$$ | ||
+ | |||
+ | where $ \mu _ {n} $ | ||
+ | is a numerical sequence. The transformation | ||
+ | |||
+ | $$ | ||
+ | \sigma = \lambda s, | ||
+ | $$ | ||
+ | |||
+ | where $ \lambda = \delta \mu \delta $, | ||
+ | $ \{ \mu _ {n} \} $ | ||
+ | is an arbitrary numerical sequence, is called a general Hausdorff transformation, and the matrix $ \delta \mu \delta $— | ||
+ | a Hausdorff matrix. Written out, a general Hausdorff transformation has the form | ||
+ | |||
+ | $$ | ||
+ | \sigma _ {n} = \ | ||
+ | \sum _ {k = 0 } ^ { n } | ||
+ | \lambda _ {nk} s _ {k} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \lambda _ {nk} = \ | ||
+ | \left \{ | ||
+ | |||
+ | \begin{array}{ll} | ||
+ | \left ( \begin{array}{c} | ||
+ | n \\ | ||
+ | k | ||
+ | \end{array} | ||
+ | \right ) | ||
+ | \Delta ^ {n - k } \mu _ {k} , & k \leq n, \\ | ||
+ | 0, & k > n; \\ | ||
+ | \end{array} | ||
+ | |||
+ | $$ | ||
− | + | $$ | |
+ | \Delta \mu _ {k} = \mu _ {k} - \mu _ {k + 1 } ,\ \Delta | ||
+ | ^ {n} \mu _ {k} = \Delta ^ {n - 1 } \mu _ {k} - \Delta ^ {n - 1 } \mu _ {k + 1 } . | ||
+ | $$ | ||
The series | The series | ||
− | + | $$ | |
+ | \sum _ {n = 0 } ^ \infty a _ {n} $$ | ||
+ | |||
+ | with partial sums $ s _ {n} $ | ||
+ | is summable by the Hausdorff method to sum $ S $ | ||
+ | if | ||
− | + | $$ | |
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | \sigma _ {n} = S. | ||
+ | $$ | ||
− | + | The field and the regularity of the Hausdorff method depend on the sequence $ \{ \mu _ {n} \} $. | |
+ | If $ \{ \mu _ {n} \} $ | ||
+ | is a real sequence, then for the regularity of the method it is necessary and sufficient that $ \{ \mu _ {n} \} $ | ||
+ | is the difference of two absolutely-monotone sequences and that | ||
− | + | $$ | |
+ | \lim\limits _ {m \rightarrow \infty } \ | ||
+ | \Delta ^ {m} \mu _ {m} = 0; \ \ | ||
+ | \mu _ {0} = 1; | ||
+ | $$ | ||
− | + | or, in another terminology, necessary and sufficient is that the $ \mu _ {n} $ | |
+ | are regular moments. | ||
− | + | The Hausdorff summation method contains as special cases a number of other well-known summation methods. Thus, for $ \mu _ {n} = 1/( q + 1) ^ {n} $ | |
+ | the Hausdorff method turns into the Euler method $ ( E, q) $, | ||
+ | for $ \mu = 1/( n + 1) ^ {k} $ | ||
+ | into the Hölder method $ ( H, k) $, | ||
+ | and for | ||
− | + | $$ | |
+ | \mu _ {n} = | ||
+ | \frac{1}{\left ( \begin{array}{c} | ||
+ | n + k \\ | ||
+ | k | ||
+ | \end{array} | ||
+ | \right ) } | ||
− | + | $$ | |
− | into the Cesàro method | + | into the Cesàro method $ ( C, k) $. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Hausdorff, "Summationsmethoden und Momentfolgen I, II" ''Math. Z.'' , '''9''' (1921) pp. 74–109; 280–299</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, "Divergent series" , Clarendon Press (1949)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Hausdorff, "Summationsmethoden und Momentfolgen I, II" ''Math. Z.'' , '''9''' (1921) pp. 74–109; 280–299</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.H. Hardy, "Divergent series" , Clarendon Press (1949)</TD></TR></table> |
Revision as of 22:10, 5 June 2020
A summation method for series of numbers or functions, introduced by F. Hausdorff [1]; it is defined as follows. A sequence $ s = \{ s _ {n} \} $
is subjected in succession to three linear matrix transformations:
$$ t = \delta s,\ \ \tau = \mu t,\ \ \sigma = \delta t, $$
where $ \delta $ is the transformation by means of the triangular matrix $ \{ \delta _ {nk} \} $:
$$ \delta _ {nk} = \ \left \{ \begin{array}{ll} (- 1) ^ {k} \left ( \begin{array}{c} n \\ k \end{array} \right ) , & k \leq n, \\ 0 , & k > n; \\ \end{array} $$
and $ \mu $ is the diagonal transformation by means the diagonal matrix $ \| \mu _ {nk} \| $:
$$ \mu _ {nk} = \ \left \{ \begin{array}{ll} \mu _ {n} , & k = n, \\ 0, & k \neq n, \\ \end{array} \right .$$
where $ \mu _ {n} $ is a numerical sequence. The transformation
$$ \sigma = \lambda s, $$
where $ \lambda = \delta \mu \delta $, $ \{ \mu _ {n} \} $ is an arbitrary numerical sequence, is called a general Hausdorff transformation, and the matrix $ \delta \mu \delta $— a Hausdorff matrix. Written out, a general Hausdorff transformation has the form
$$ \sigma _ {n} = \ \sum _ {k = 0 } ^ { n } \lambda _ {nk} s _ {k} , $$
where
$$ \lambda _ {nk} = \ \left \{ \begin{array}{ll} \left ( \begin{array}{c} n \\ k \end{array} \right ) \Delta ^ {n - k } \mu _ {k} , & k \leq n, \\ 0, & k > n; \\ \end{array} $$
$$ \Delta \mu _ {k} = \mu _ {k} - \mu _ {k + 1 } ,\ \Delta ^ {n} \mu _ {k} = \Delta ^ {n - 1 } \mu _ {k} - \Delta ^ {n - 1 } \mu _ {k + 1 } . $$
The series
$$ \sum _ {n = 0 } ^ \infty a _ {n} $$
with partial sums $ s _ {n} $ is summable by the Hausdorff method to sum $ S $ if
$$ \lim\limits _ {n \rightarrow \infty } \ \sigma _ {n} = S. $$
The field and the regularity of the Hausdorff method depend on the sequence $ \{ \mu _ {n} \} $. If $ \{ \mu _ {n} \} $ is a real sequence, then for the regularity of the method it is necessary and sufficient that $ \{ \mu _ {n} \} $ is the difference of two absolutely-monotone sequences and that
$$ \lim\limits _ {m \rightarrow \infty } \ \Delta ^ {m} \mu _ {m} = 0; \ \ \mu _ {0} = 1; $$
or, in another terminology, necessary and sufficient is that the $ \mu _ {n} $ are regular moments.
The Hausdorff summation method contains as special cases a number of other well-known summation methods. Thus, for $ \mu _ {n} = 1/( q + 1) ^ {n} $ the Hausdorff method turns into the Euler method $ ( E, q) $, for $ \mu = 1/( n + 1) ^ {k} $ into the Hölder method $ ( H, k) $, and for
$$ \mu _ {n} = \frac{1}{\left ( \begin{array}{c} n + k \\ k \end{array} \right ) } $$
into the Cesàro method $ ( C, k) $.
References
[1] | F. Hausdorff, "Summationsmethoden und Momentfolgen I, II" Math. Z. , 9 (1921) pp. 74–109; 280–299 |
[2] | G.H. Hardy, "Divergent series" , Clarendon Press (1949) |
Hausdorff summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hausdorff_summation_method&oldid=47199