Difference between revisions of "Harmonizable random process"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0465901.png | ||
+ | $#A+1 = 44 n = 0 | ||
+ | $#C+1 = 44 : ~/encyclopedia/old_files/data/H046/H.0406590 Harmonizable random process | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A complex-valued random function $ X = X( t) $ | |
+ | of a real parameter $ t $ | ||
+ | which may be represented as a [[Stochastic integral|stochastic integral]]: | ||
− | + | $$ \tag{* } | |
+ | X ( t) = \int\limits _ {- \infty } ^ \infty | ||
+ | e ^ {i \lambda t } d \Phi ( \lambda ) = \ | ||
+ | \lim\limits \sum _ { k } | ||
+ | e ^ {i \lambda t } | ||
+ | \Delta _ {k} \Phi ( \lambda ), | ||
+ | $$ | ||
− | + | where $ \Phi ( \lambda ) $, | |
+ | $ - \infty < \lambda < \infty $, | ||
+ | is a random process. The increments $ \Delta _ {k} \Phi ( \lambda ) = \Phi ( \lambda _ {k+} 1 ) - \Phi ( \lambda _ {k} ) $ | ||
+ | in (*) define random "amplitudes" $ A _ {k} = | \Delta _ {k} \Phi ( \lambda ) | $ | ||
+ | and "phases" $ \theta _ {k} = \mathop{\rm arg} \Delta _ {k} \Phi ( \lambda ) $ | ||
+ | of elementary vibrations of the form | ||
− | + | $$ | |
+ | Ae ^ {i ( \lambda t + \theta ) } = \ | ||
+ | e ^ {i \lambda t } | ||
+ | \Delta _ {k} \Phi ( \lambda ) | ||
+ | $$ | ||
− | + | of frequencies $ \lambda $, | |
+ | $ \lambda _ {k} \leq \lambda \leq \lambda _ {k+} 1 $, | ||
+ | the superposition of which yields, in the limit, $ X = X( t) $. | ||
+ | The (mean-square) limit in the representation (*) is taken along a sequence of successively-finer subdivisions of the line $ - \infty < \lambda < \infty $ | ||
+ | into intervals $ \Delta _ {k} = ( \lambda _ {k,\ } \lambda _ {k+} 1 ) $ | ||
+ | with $ \max _ {k} ( \lambda _ {k + 1 } - \lambda _ {k} ) \rightarrow 0 $. | ||
+ | It is usually assumed that | ||
− | + | $$ | |
+ | F ( \Delta _ {1} \times \Delta _ {2} ) = \ | ||
+ | {\mathsf E} ( \Delta _ {1} \Phi \cdot \Delta _ {2} \overline \Phi \; ) , | ||
+ | $$ | ||
− | + | as a function of the sets $ \Delta _ {1} \times \Delta _ {2} $ | |
+ | in the plane, defines a complex measure of bounded variation; in this case the corresponding process $ \Phi ( \lambda ) $, | ||
+ | $ - \infty < \lambda < \infty $( | ||
+ | or, more exactly, the corresponding random measure $ d \Phi ( \lambda ) $), | ||
+ | is unambiguously defined by the process $ X( t) $, | ||
+ | $ - \infty < t < \infty $, | ||
+ | itself: | ||
− | + | $$ | |
+ | \Delta \Phi ( \lambda ) = \ | ||
+ | \lim\limits _ {T \rightarrow \infty } \ | ||
+ | { | ||
+ | \frac{1}{2T } | ||
+ | } | ||
+ | \int\limits _ { - } T ^ { T } | ||
− | + | \frac{e ^ {- i \lambda _ {2} t } - e ^ {- i \lambda _ {1} t } }{- it } | |
− | + | X ( t) dt | |
+ | $$ | ||
+ | |||
+ | for any interval $ \Delta = ( \lambda _ {1} , \lambda _ {2} ) $ | ||
+ | such that $ d \Phi ( \lambda _ {1} ) = d \Phi ( \lambda _ {2} ) = 0 $, | ||
+ | and | ||
+ | |||
+ | $$ | ||
+ | \Phi ( \lambda ) = \ | ||
+ | \lim\limits _ {T \rightarrow \infty } \ | ||
+ | \int\limits _ { - } T ^ { T } | ||
+ | e ^ {- i \lambda t } | ||
+ | X ( t) dt | ||
+ | $$ | ||
+ | |||
+ | for any point $ \lambda $, | ||
+ | $ - \infty < \lambda < \infty $. | ||
+ | A random process $ X( t) $, | ||
+ | $ - \infty < t < \infty $, | ||
+ | is harmonizable if and only if its covariance is representable in the form | ||
+ | |||
+ | $$ | ||
+ | B ( s, t) = \ | ||
+ | \int\limits _ {- \infty } ^ \infty | ||
+ | \int\limits _ {- \infty } ^ \infty | ||
+ | e ^ {i ( \lambda s - \mu t) } | ||
+ | F ( d \lambda \times d \mu ). | ||
+ | $$ | ||
===Examples of harmonizable random processes.=== | ===Examples of harmonizable random processes.=== | ||
− | |||
1) A modulated stationary random process. If | 1) A modulated stationary random process. If | ||
− | + | $$ | |
+ | X _ {0} ( t) = \int\limits _ {- \infty } ^ \infty | ||
+ | e ^ {i \lambda t } d \Phi _ {0} ( t) | ||
+ | $$ | ||
is a stationary random process, a process of the form | is a stationary random process, a process of the form | ||
− | + | $$ | |
+ | X ( t) = c ( t) X _ {0} ( t), | ||
+ | $$ | ||
− | where | + | where $ c( t) = \int _ {- \infty } ^ \infty e ^ {i \lambda t } m ( d \lambda ) $, |
+ | where $ m ( d \lambda ) $ | ||
+ | is a measure on the line, is usually no longer stationary, but will be harmonizable: | ||
− | + | $$ | |
+ | X ( t) = \int\limits _ {- \infty } ^ \infty | ||
+ | e ^ {i \lambda t } d \Phi ( \lambda ), | ||
+ | $$ | ||
− | where the random measure | + | where the random measure $ d \Phi ( \lambda ) $ |
+ | is defined by the formula | ||
− | + | $$ | |
+ | \Delta \Phi ( \lambda ) = \ | ||
+ | \int\limits _ \Delta | ||
+ | m ( \Delta - \lambda ) \ | ||
+ | d \Phi _ {0} ( \lambda ). | ||
+ | $$ | ||
2) A process defined by sliding summation (or moving averages) | 2) A process defined by sliding summation (or moving averages) | ||
− | + | $$ | |
+ | X ( t) = \int\limits _ {- \infty } ^ \infty | ||
+ | c ( t - s) dZ ( s), | ||
+ | $$ | ||
− | where | + | where $ d Z( t) $ |
+ | is some random measure on the line and the weight function $ c( t) $ | ||
+ | is of the same type as above: | ||
− | + | $$ | |
+ | c ( t) = \int\limits _ {- \infty } ^ \infty | ||
+ | e ^ {i \lambda t } | ||
+ | m ( d \lambda ) . | ||
+ | $$ | ||
In this case | In this case | ||
− | + | $$ | |
+ | X ( t) = \int\limits _ {- \infty } ^ \infty | ||
+ | e ^ {i \lambda t } d \Phi ( \lambda ), | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \Delta \Phi ( \lambda ) = \ | ||
+ | \int\limits _ \Delta \left [ | ||
+ | \int\limits _ {- \infty } ^ \infty | ||
+ | e ^ {- i \lambda t } \ | ||
+ | dZ ( t) \right ] | ||
+ | m ( d \lambda ). | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Loève, "Probability theory" , '''2''' , Springer (1978)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Loève, "Probability theory" , '''2''' , Springer (1978)</TD></TR></table> |
Latest revision as of 19:43, 5 June 2020
A complex-valued random function $ X = X( t) $
of a real parameter $ t $
which may be represented as a stochastic integral:
$$ \tag{* } X ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } d \Phi ( \lambda ) = \ \lim\limits \sum _ { k } e ^ {i \lambda t } \Delta _ {k} \Phi ( \lambda ), $$
where $ \Phi ( \lambda ) $, $ - \infty < \lambda < \infty $, is a random process. The increments $ \Delta _ {k} \Phi ( \lambda ) = \Phi ( \lambda _ {k+} 1 ) - \Phi ( \lambda _ {k} ) $ in (*) define random "amplitudes" $ A _ {k} = | \Delta _ {k} \Phi ( \lambda ) | $ and "phases" $ \theta _ {k} = \mathop{\rm arg} \Delta _ {k} \Phi ( \lambda ) $ of elementary vibrations of the form
$$ Ae ^ {i ( \lambda t + \theta ) } = \ e ^ {i \lambda t } \Delta _ {k} \Phi ( \lambda ) $$
of frequencies $ \lambda $, $ \lambda _ {k} \leq \lambda \leq \lambda _ {k+} 1 $, the superposition of which yields, in the limit, $ X = X( t) $. The (mean-square) limit in the representation (*) is taken along a sequence of successively-finer subdivisions of the line $ - \infty < \lambda < \infty $ into intervals $ \Delta _ {k} = ( \lambda _ {k,\ } \lambda _ {k+} 1 ) $ with $ \max _ {k} ( \lambda _ {k + 1 } - \lambda _ {k} ) \rightarrow 0 $. It is usually assumed that
$$ F ( \Delta _ {1} \times \Delta _ {2} ) = \ {\mathsf E} ( \Delta _ {1} \Phi \cdot \Delta _ {2} \overline \Phi \; ) , $$
as a function of the sets $ \Delta _ {1} \times \Delta _ {2} $ in the plane, defines a complex measure of bounded variation; in this case the corresponding process $ \Phi ( \lambda ) $, $ - \infty < \lambda < \infty $( or, more exactly, the corresponding random measure $ d \Phi ( \lambda ) $), is unambiguously defined by the process $ X( t) $, $ - \infty < t < \infty $, itself:
$$ \Delta \Phi ( \lambda ) = \ \lim\limits _ {T \rightarrow \infty } \ { \frac{1}{2T } } \int\limits _ { - } T ^ { T } \frac{e ^ {- i \lambda _ {2} t } - e ^ {- i \lambda _ {1} t } }{- it } X ( t) dt $$
for any interval $ \Delta = ( \lambda _ {1} , \lambda _ {2} ) $ such that $ d \Phi ( \lambda _ {1} ) = d \Phi ( \lambda _ {2} ) = 0 $, and
$$ \Phi ( \lambda ) = \ \lim\limits _ {T \rightarrow \infty } \ \int\limits _ { - } T ^ { T } e ^ {- i \lambda t } X ( t) dt $$
for any point $ \lambda $, $ - \infty < \lambda < \infty $. A random process $ X( t) $, $ - \infty < t < \infty $, is harmonizable if and only if its covariance is representable in the form
$$ B ( s, t) = \ \int\limits _ {- \infty } ^ \infty \int\limits _ {- \infty } ^ \infty e ^ {i ( \lambda s - \mu t) } F ( d \lambda \times d \mu ). $$
Examples of harmonizable random processes.
1) A modulated stationary random process. If
$$ X _ {0} ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } d \Phi _ {0} ( t) $$
is a stationary random process, a process of the form
$$ X ( t) = c ( t) X _ {0} ( t), $$
where $ c( t) = \int _ {- \infty } ^ \infty e ^ {i \lambda t } m ( d \lambda ) $, where $ m ( d \lambda ) $ is a measure on the line, is usually no longer stationary, but will be harmonizable:
$$ X ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } d \Phi ( \lambda ), $$
where the random measure $ d \Phi ( \lambda ) $ is defined by the formula
$$ \Delta \Phi ( \lambda ) = \ \int\limits _ \Delta m ( \Delta - \lambda ) \ d \Phi _ {0} ( \lambda ). $$
2) A process defined by sliding summation (or moving averages)
$$ X ( t) = \int\limits _ {- \infty } ^ \infty c ( t - s) dZ ( s), $$
where $ d Z( t) $ is some random measure on the line and the weight function $ c( t) $ is of the same type as above:
$$ c ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } m ( d \lambda ) . $$
In this case
$$ X ( t) = \int\limits _ {- \infty } ^ \infty e ^ {i \lambda t } d \Phi ( \lambda ), $$
where
$$ \Delta \Phi ( \lambda ) = \ \int\limits _ \Delta \left [ \int\limits _ {- \infty } ^ \infty e ^ {- i \lambda t } \ dZ ( t) \right ] m ( d \lambda ). $$
References
[1] | M. Loève, "Probability theory" , 2 , Springer (1978) |
Harmonizable random process. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonizable_random_process&oldid=47186