Difference between revisions of "Harmonic measure, principle of"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0465101.png | ||
+ | $#A+1 = 37 n = 0 | ||
+ | $#C+1 = 37 : ~/encyclopedia/old_files/data/H046/H.0406510 Harmonic measure, principle of | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The [[Harmonic measure|harmonic measure]] does not decrease under mappings realized by single-valued analytic functions. If $ \omega ( z; \alpha , D) $ | |
+ | is the harmonic measure of a boundary set $ \alpha $ | ||
+ | with respect to a domain $ D $ | ||
+ | in the complex $ z $- | ||
+ | plane, one specific formulation of the principle of harmonic measure is as follows. In a domain $ D _ {z} $ | ||
+ | with boundary $ \Gamma _ {z} $ | ||
+ | consisting of a finite number of Jordan arcs let there be given a single-valued analytic function $ w = w( z) $ | ||
+ | which satisfies the following conditions: the values $ w = w( z) $, | ||
+ | $ z \in D _ {z} $, | ||
+ | form part of the domain $ D _ {w} $ | ||
+ | with boundary $ \Gamma _ {w} $ | ||
+ | consisting of a finite number of Jordan arcs; the function $ w( z) $ | ||
+ | can be continuously extended onto some set $ \alpha _ {z} \subset \Gamma _ {z} $ | ||
+ | consisting of a finite number of arcs; and the values of $ w( z) $ | ||
+ | on $ \alpha _ {z} $ | ||
+ | form part of a set $ E \subset \overline{D}\; _ {w} $ | ||
+ | with boundary $ \partial E $ | ||
+ | consisting of a finite number of Jordan arcs. Under these conditions one has, at any point $ z \in D _ {z} $ | ||
+ | at which $ w( z) \notin E $, | ||
− | + | $$ \tag{1 } | |
+ | \omega ( z; \alpha _ {z} , D _ {z} ) \leq \ | ||
+ | \omega ( w ( z); \partial E, D _ {w} ^ {*} ), | ||
+ | $$ | ||
− | + | where $ D _ {w} ^ {*} $ | |
+ | denotes the subdomain of $ D _ {w} $ | ||
+ | such that $ w( z) \in D _ {w} ^ {*} $ | ||
+ | and $ \partial D _ {w} ^ {*} \subset \Gamma _ {w} \cup \partial E $. | ||
+ | If (1) becomes an equality at any point $ z $, | ||
+ | then equality will be valid everywhere in $ D _ {z} $. | ||
+ | In particular, for a one-to-one conformal mapping from $ D _ {z} $ | ||
+ | onto $ D _ {w} $ | ||
+ | one has the identity | ||
− | The principle of harmonic measure has been generalized to holomorphic functions | + | $$ |
+ | \omega ( z; \alpha _ {z} , D _ {z} ) \equiv \ | ||
+ | \omega ( w ( z); \alpha _ {w} , D _ {w} ). | ||
+ | $$ | ||
+ | |||
+ | The principle of harmonic measure, including its numerous applications [[#References|[1]]], [[#References|[2]]], was established by R. Nevanlinna. In particular, a corollary of the principle is the [[Two-constants theorem|two-constants theorem]], which implies, in turn, that for a function $ w( z) $ | ||
+ | that is holomorphic in a domain $ D _ {z} $, | ||
+ | the maximum value of $ \mathop{\rm ln} w( z) $ | ||
+ | on the level line $ \{ {z } : {\omega ( z ; \alpha _ {z} , D _ {z} ) = t } \} $ | ||
+ | is a convex function of the parameter $ t \in ( 0, 1) $. | ||
+ | |||
+ | The principle of harmonic measure has been generalized to holomorphic functions $ w = w( z) $, | ||
+ | $ z = ( z _ {1} \dots z _ {n} ) $, | ||
+ | of several complex variables, $ n \geq 1 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Nevanlinna, R. Nevanlinna, "Ueber die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie" ''Acta Soc. Sci. Fennica'' , '''50''' : 5 (1922) pp. 1–46</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F. Nevanlinna, R. Nevanlinna, "Ueber die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie" ''Acta Soc. Sci. Fennica'' , '''50''' : 5 (1922) pp. 1–46</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)</TD></TR></table> |
Latest revision as of 19:43, 5 June 2020
The harmonic measure does not decrease under mappings realized by single-valued analytic functions. If $ \omega ( z; \alpha , D) $
is the harmonic measure of a boundary set $ \alpha $
with respect to a domain $ D $
in the complex $ z $-
plane, one specific formulation of the principle of harmonic measure is as follows. In a domain $ D _ {z} $
with boundary $ \Gamma _ {z} $
consisting of a finite number of Jordan arcs let there be given a single-valued analytic function $ w = w( z) $
which satisfies the following conditions: the values $ w = w( z) $,
$ z \in D _ {z} $,
form part of the domain $ D _ {w} $
with boundary $ \Gamma _ {w} $
consisting of a finite number of Jordan arcs; the function $ w( z) $
can be continuously extended onto some set $ \alpha _ {z} \subset \Gamma _ {z} $
consisting of a finite number of arcs; and the values of $ w( z) $
on $ \alpha _ {z} $
form part of a set $ E \subset \overline{D}\; _ {w} $
with boundary $ \partial E $
consisting of a finite number of Jordan arcs. Under these conditions one has, at any point $ z \in D _ {z} $
at which $ w( z) \notin E $,
$$ \tag{1 } \omega ( z; \alpha _ {z} , D _ {z} ) \leq \ \omega ( w ( z); \partial E, D _ {w} ^ {*} ), $$
where $ D _ {w} ^ {*} $ denotes the subdomain of $ D _ {w} $ such that $ w( z) \in D _ {w} ^ {*} $ and $ \partial D _ {w} ^ {*} \subset \Gamma _ {w} \cup \partial E $. If (1) becomes an equality at any point $ z $, then equality will be valid everywhere in $ D _ {z} $. In particular, for a one-to-one conformal mapping from $ D _ {z} $ onto $ D _ {w} $ one has the identity
$$ \omega ( z; \alpha _ {z} , D _ {z} ) \equiv \ \omega ( w ( z); \alpha _ {w} , D _ {w} ). $$
The principle of harmonic measure, including its numerous applications [1], [2], was established by R. Nevanlinna. In particular, a corollary of the principle is the two-constants theorem, which implies, in turn, that for a function $ w( z) $ that is holomorphic in a domain $ D _ {z} $, the maximum value of $ \mathop{\rm ln} w( z) $ on the level line $ \{ {z } : {\omega ( z ; \alpha _ {z} , D _ {z} ) = t } \} $ is a convex function of the parameter $ t \in ( 0, 1) $.
The principle of harmonic measure has been generalized to holomorphic functions $ w = w( z) $, $ z = ( z _ {1} \dots z _ {n} ) $, of several complex variables, $ n \geq 1 $.
References
[1] | F. Nevanlinna, R. Nevanlinna, "Ueber die Eigenschaften einer analytischen Funktion in der Umgebung einer singulären Stelle oder Linie" Acta Soc. Sci. Fennica , 50 : 5 (1922) pp. 1–46 |
[2] | R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German) |
Harmonic measure, principle of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Harmonic_measure,_principle_of&oldid=47183