Difference between revisions of "Hardy inequality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | h0463401.png | ||
+ | $#A+1 = 25 n = 0 | ||
+ | $#C+1 = 25 : ~/encyclopedia/old_files/data/H046/H.0406340 Hardy inequality | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''for series'' | ''for series'' | ||
− | If | + | If $ p > 1 $, |
+ | $ a _ {n} \geq 0 $ | ||
+ | and $ A _ {n} = a _ {1} + \dots + a _ {n} $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | then | ||
+ | |||
+ | $$ | ||
+ | \sum _ {n = 1 } ^ \infty | ||
+ | \left ( | ||
− | + | \frac{A _ {n} }{n} | |
− | except when all the | + | \right ) ^ {p} < \ |
+ | \left ( | ||
+ | \frac{p}{p - 1 } | ||
+ | |||
+ | \right ) ^ {p} | ||
+ | \sum _ {n = 1 } ^ \infty | ||
+ | a _ {n} ^ {p} , | ||
+ | $$ | ||
+ | |||
+ | except when all the $ a _ {n} $ | ||
+ | are zero. The constant $ ( p/( p - 1)) ^ {p} $ | ||
+ | in this inequality is best possible. | ||
The Hardy inequalities for integrals are: | The Hardy inequalities for integrals are: | ||
− | < | + | $$ |
+ | \int\limits _ { 0 } ^ \infty | ||
+ | x ^ {-} p \left | | ||
+ | \int\limits _ { 0 } ^ { x } f ( t) dt \right | ^ {p} | ||
+ | dx < \left ( | ||
+ | |||
+ | \frac{p}{p - 1 } | ||
+ | |||
+ | \right ) ^ {p} | ||
+ | \int\limits _ { 0 } ^ \infty | ||
+ | | f ( x) | ^ {p} dx,\ \ | ||
+ | p > 1 , | ||
+ | $$ | ||
and | and | ||
− | < | + | $$ |
+ | \int\limits _ { 0 } ^ \infty | ||
+ | \left | | ||
+ | \int\limits _ { x } ^ \infty | ||
+ | f ( t) dt \right | ^ {p} | ||
+ | dx < p ^ {p} | ||
+ | \int\limits _ { 0 } ^ \infty | ||
+ | | xf ( x) | ^ {p} dx,\ \ | ||
+ | p > 1. | ||
+ | $$ | ||
− | The inequalities are valid for all functions for which the right-hand sides are finite, except when | + | The inequalities are valid for all functions for which the right-hand sides are finite, except when $ f $ |
+ | vanishes almost-everywhere on $ ( 0, + \infty ) $. | ||
+ | (In this case the inequalities turn into equalities.) The constants $ ( p/( p - 1)) ^ {p} $ | ||
+ | and $ p ^ {p} $ | ||
+ | are best possible. | ||
The integral Hardy inequalities can be generalized to arbitrary intervals: | The integral Hardy inequalities can be generalized to arbitrary intervals: | ||
− | < | + | $$ |
+ | \int\limits _ { a } ^ { b } | ||
+ | \left | x ^ {\alpha - 1 } | ||
+ | \int\limits _ { a } ^ { x } f ( t) dt \right | ^ {p} | ||
+ | dx \leq c | ||
+ | \int\limits _ { a } ^ { b } | ||
+ | | x ^ \alpha f ( x) | ^ {p} dx,\ \ | ||
+ | \alpha < 1 - { | ||
+ | \frac{1}{p} | ||
+ | } , | ||
+ | $$ | ||
− | + | $$ | |
+ | \int\limits _ { a } ^ { b } \left | x ^ {\alpha - 1 } \int\limits _ { x } ^ { b } f ( t) dt \right | ^ {p} dx \leq c | ||
+ | \int\limits _ { a } ^ { b } | x ^ \alpha f ( x) | ^ {p} dx,\ \alpha > 1 - { | ||
+ | \frac{1}{p} | ||
+ | } , | ||
+ | $$ | ||
− | where < | + | where $ 0 \leq a < b \leq + \infty $, |
+ | $ 1 < p < + \infty $, | ||
+ | and where the $ c $' | ||
+ | s are certain constants. | ||
Generalized Hardy inequalities are inequalities of the form | Generalized Hardy inequalities are inequalities of the form | ||
− | + | $$ \tag{1 } | |
+ | \int\limits _ { a } ^ { b } | ||
+ | \left | \phi ( x) | ||
+ | \int\limits _ { a } ^ { x } | ||
+ | f ( t) dt \right | ^ {p} \ | ||
+ | dx \leq c | ||
+ | \int\limits _ { a } ^ { b } | ||
+ | | \psi ( x) f ( x) | ^ {p} dx, | ||
+ | $$ | ||
− | + | $$ \tag{2 } | |
+ | \int\limits _ { a } ^ { b } \left | \phi ( x) \int\limits _ { x } ^ { b } f ( t) | ||
+ | dt \right | ^ {p} dx \leq c \int\limits _ { a } ^ { b } | \psi ( x) f ( x) | ^ {p} dx. | ||
+ | $$ | ||
− | If | + | If $ a = 0 $ |
+ | and $ b = + \infty $, | ||
+ | inequality (1) holds if and only if | ||
− | + | $$ | |
+ | \sup _ {x > 0 } | ||
+ | \left [ \int\limits _ { x } ^ \infty | ||
+ | | \phi ( t) | ^ {p} dt | ||
+ | \right ] ^ {1/p} \left [ | ||
+ | \int\limits _ { 0 } ^ { x } | ||
+ | | \psi ( t) | ^ {- p ^ \prime } | ||
+ | dt \right ] ^ {1/p ^ \prime } | ||
+ | < + \infty , | ||
+ | $$ | ||
and (2) holds if and only if | and (2) holds if and only if | ||
− | + | $$ | |
+ | \sup _ {x > 0 } | ||
+ | \left [ \int\limits _ { 0 } ^ { x } | ||
+ | | \phi ( t) | ^ {p} \ | ||
+ | dt \right ] ^ {1/p} | ||
+ | \left [ \int\limits _ { x } ^ \infty | ||
+ | | \psi ( t) | ^ {- p ^ \prime } \ | ||
+ | dt \right ] ^ {1/p ^ \prime } | ||
+ | < + \infty , | ||
+ | $$ | ||
− | + | $$ | |
+ | { | ||
+ | \frac{1}{p} | ||
+ | } + { | ||
+ | \frac{1}{p ^ \prime } | ||
+ | } = 1. | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B. Muckenhoupt, "Hardy's inequality with weights" ''Studia Math.'' , '''44''' (1972) pp. 31–38</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B. Muckenhoupt, "Hardy's inequality with weights" ''Studia Math.'' , '''44''' (1972) pp. 31–38</TD></TR></table> |
Latest revision as of 19:43, 5 June 2020
for series
If $ p > 1 $, $ a _ {n} \geq 0 $ and $ A _ {n} = a _ {1} + \dots + a _ {n} $, $ n = 1, 2 \dots $ then
$$ \sum _ {n = 1 } ^ \infty \left ( \frac{A _ {n} }{n} \right ) ^ {p} < \ \left ( \frac{p}{p - 1 } \right ) ^ {p} \sum _ {n = 1 } ^ \infty a _ {n} ^ {p} , $$
except when all the $ a _ {n} $ are zero. The constant $ ( p/( p - 1)) ^ {p} $ in this inequality is best possible.
The Hardy inequalities for integrals are:
$$ \int\limits _ { 0 } ^ \infty x ^ {-} p \left | \int\limits _ { 0 } ^ { x } f ( t) dt \right | ^ {p} dx < \left ( \frac{p}{p - 1 } \right ) ^ {p} \int\limits _ { 0 } ^ \infty | f ( x) | ^ {p} dx,\ \ p > 1 , $$
and
$$ \int\limits _ { 0 } ^ \infty \left | \int\limits _ { x } ^ \infty f ( t) dt \right | ^ {p} dx < p ^ {p} \int\limits _ { 0 } ^ \infty | xf ( x) | ^ {p} dx,\ \ p > 1. $$
The inequalities are valid for all functions for which the right-hand sides are finite, except when $ f $ vanishes almost-everywhere on $ ( 0, + \infty ) $. (In this case the inequalities turn into equalities.) The constants $ ( p/( p - 1)) ^ {p} $ and $ p ^ {p} $ are best possible.
The integral Hardy inequalities can be generalized to arbitrary intervals:
$$ \int\limits _ { a } ^ { b } \left | x ^ {\alpha - 1 } \int\limits _ { a } ^ { x } f ( t) dt \right | ^ {p} dx \leq c \int\limits _ { a } ^ { b } | x ^ \alpha f ( x) | ^ {p} dx,\ \ \alpha < 1 - { \frac{1}{p} } , $$
$$ \int\limits _ { a } ^ { b } \left | x ^ {\alpha - 1 } \int\limits _ { x } ^ { b } f ( t) dt \right | ^ {p} dx \leq c \int\limits _ { a } ^ { b } | x ^ \alpha f ( x) | ^ {p} dx,\ \alpha > 1 - { \frac{1}{p} } , $$
where $ 0 \leq a < b \leq + \infty $, $ 1 < p < + \infty $, and where the $ c $' s are certain constants.
Generalized Hardy inequalities are inequalities of the form
$$ \tag{1 } \int\limits _ { a } ^ { b } \left | \phi ( x) \int\limits _ { a } ^ { x } f ( t) dt \right | ^ {p} \ dx \leq c \int\limits _ { a } ^ { b } | \psi ( x) f ( x) | ^ {p} dx, $$
$$ \tag{2 } \int\limits _ { a } ^ { b } \left | \phi ( x) \int\limits _ { x } ^ { b } f ( t) dt \right | ^ {p} dx \leq c \int\limits _ { a } ^ { b } | \psi ( x) f ( x) | ^ {p} dx. $$
If $ a = 0 $ and $ b = + \infty $, inequality (1) holds if and only if
$$ \sup _ {x > 0 } \left [ \int\limits _ { x } ^ \infty | \phi ( t) | ^ {p} dt \right ] ^ {1/p} \left [ \int\limits _ { 0 } ^ { x } | \psi ( t) | ^ {- p ^ \prime } dt \right ] ^ {1/p ^ \prime } < + \infty , $$
and (2) holds if and only if
$$ \sup _ {x > 0 } \left [ \int\limits _ { 0 } ^ { x } | \phi ( t) | ^ {p} \ dt \right ] ^ {1/p} \left [ \int\limits _ { x } ^ \infty | \psi ( t) | ^ {- p ^ \prime } \ dt \right ] ^ {1/p ^ \prime } < + \infty , $$
$$ { \frac{1}{p} } + { \frac{1}{p ^ \prime } } = 1. $$
References
[1] | G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934) |
[2] | S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian) |
[3] | B. Muckenhoupt, "Hardy's inequality with weights" Studia Math. , 44 (1972) pp. 31–38 |
Hardy inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy_inequality&oldid=47176