Difference between revisions of "Hardy inequality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | h0463401.png | ||
| + | $#A+1 = 25 n = 0 | ||
| + | $#C+1 = 25 : ~/encyclopedia/old_files/data/H046/H.0406340 Hardy inequality | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''for series'' | ''for series'' | ||
| − | If | + | If $ p > 1 $, |
| + | $ a _ {n} \geq 0 $ | ||
| + | and $ A _ {n} = a _ {1} + \dots + a _ {n} $, | ||
| + | $ n = 1, 2 \dots $ | ||
| + | then | ||
| + | |||
| + | $$ | ||
| + | \sum _ {n = 1 } ^ \infty | ||
| + | \left ( | ||
| − | + | \frac{A _ {n} }{n} | |
| − | except when all the | + | \right ) ^ {p} < \ |
| + | \left ( | ||
| + | \frac{p}{p - 1 } | ||
| + | |||
| + | \right ) ^ {p} | ||
| + | \sum _ {n = 1 } ^ \infty | ||
| + | a _ {n} ^ {p} , | ||
| + | $$ | ||
| + | |||
| + | except when all the $ a _ {n} $ | ||
| + | are zero. The constant $ ( p/( p - 1)) ^ {p} $ | ||
| + | in this inequality is best possible. | ||
The Hardy inequalities for integrals are: | The Hardy inequalities for integrals are: | ||
| − | < | + | $$ |
| + | \int\limits _ { 0 } ^ \infty | ||
| + | x ^ {-} p \left | | ||
| + | \int\limits _ { 0 } ^ { x } f ( t) dt \right | ^ {p} | ||
| + | dx < \left ( | ||
| + | |||
| + | \frac{p}{p - 1 } | ||
| + | |||
| + | \right ) ^ {p} | ||
| + | \int\limits _ { 0 } ^ \infty | ||
| + | | f ( x) | ^ {p} dx,\ \ | ||
| + | p > 1 , | ||
| + | $$ | ||
and | and | ||
| − | < | + | $$ |
| + | \int\limits _ { 0 } ^ \infty | ||
| + | \left | | ||
| + | \int\limits _ { x } ^ \infty | ||
| + | f ( t) dt \right | ^ {p} | ||
| + | dx < p ^ {p} | ||
| + | \int\limits _ { 0 } ^ \infty | ||
| + | | xf ( x) | ^ {p} dx,\ \ | ||
| + | p > 1. | ||
| + | $$ | ||
| − | The inequalities are valid for all functions for which the right-hand sides are finite, except when | + | The inequalities are valid for all functions for which the right-hand sides are finite, except when $ f $ |
| + | vanishes almost-everywhere on $ ( 0, + \infty ) $. | ||
| + | (In this case the inequalities turn into equalities.) The constants $ ( p/( p - 1)) ^ {p} $ | ||
| + | and $ p ^ {p} $ | ||
| + | are best possible. | ||
The integral Hardy inequalities can be generalized to arbitrary intervals: | The integral Hardy inequalities can be generalized to arbitrary intervals: | ||
| − | < | + | $$ |
| + | \int\limits _ { a } ^ { b } | ||
| + | \left | x ^ {\alpha - 1 } | ||
| + | \int\limits _ { a } ^ { x } f ( t) dt \right | ^ {p} | ||
| + | dx \leq c | ||
| + | \int\limits _ { a } ^ { b } | ||
| + | | x ^ \alpha f ( x) | ^ {p} dx,\ \ | ||
| + | \alpha < 1 - { | ||
| + | \frac{1}{p} | ||
| + | } , | ||
| + | $$ | ||
| − | + | $$ | |
| + | \int\limits _ { a } ^ { b } \left | x ^ {\alpha - 1 } \int\limits _ { x } ^ { b } f ( t) dt \right | ^ {p} dx \leq c | ||
| + | \int\limits _ { a } ^ { b } | x ^ \alpha f ( x) | ^ {p} dx,\ \alpha > 1 - { | ||
| + | \frac{1}{p} | ||
| + | } , | ||
| + | $$ | ||
| − | where < | + | where $ 0 \leq a < b \leq + \infty $, |
| + | $ 1 < p < + \infty $, | ||
| + | and where the $ c $' | ||
| + | s are certain constants. | ||
Generalized Hardy inequalities are inequalities of the form | Generalized Hardy inequalities are inequalities of the form | ||
| − | + | $$ \tag{1 } | |
| + | \int\limits _ { a } ^ { b } | ||
| + | \left | \phi ( x) | ||
| + | \int\limits _ { a } ^ { x } | ||
| + | f ( t) dt \right | ^ {p} \ | ||
| + | dx \leq c | ||
| + | \int\limits _ { a } ^ { b } | ||
| + | | \psi ( x) f ( x) | ^ {p} dx, | ||
| + | $$ | ||
| − | + | $$ \tag{2 } | |
| + | \int\limits _ { a } ^ { b } \left | \phi ( x) \int\limits _ { x } ^ { b } f ( t) | ||
| + | dt \right | ^ {p} dx \leq c \int\limits _ { a } ^ { b } | \psi ( x) f ( x) | ^ {p} dx. | ||
| + | $$ | ||
| − | If | + | If $ a = 0 $ |
| + | and $ b = + \infty $, | ||
| + | inequality (1) holds if and only if | ||
| − | + | $$ | |
| + | \sup _ {x > 0 } | ||
| + | \left [ \int\limits _ { x } ^ \infty | ||
| + | | \phi ( t) | ^ {p} dt | ||
| + | \right ] ^ {1/p} \left [ | ||
| + | \int\limits _ { 0 } ^ { x } | ||
| + | | \psi ( t) | ^ {- p ^ \prime } | ||
| + | dt \right ] ^ {1/p ^ \prime } | ||
| + | < + \infty , | ||
| + | $$ | ||
and (2) holds if and only if | and (2) holds if and only if | ||
| − | + | $$ | |
| + | \sup _ {x > 0 } | ||
| + | \left [ \int\limits _ { 0 } ^ { x } | ||
| + | | \phi ( t) | ^ {p} \ | ||
| + | dt \right ] ^ {1/p} | ||
| + | \left [ \int\limits _ { x } ^ \infty | ||
| + | | \psi ( t) | ^ {- p ^ \prime } \ | ||
| + | dt \right ] ^ {1/p ^ \prime } | ||
| + | < + \infty , | ||
| + | $$ | ||
| − | + | $$ | |
| + | { | ||
| + | \frac{1}{p} | ||
| + | } + { | ||
| + | \frac{1}{p ^ \prime } | ||
| + | } = 1. | ||
| + | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B. Muckenhoupt, "Hardy's inequality with weights" ''Studia Math.'' , '''44''' (1972) pp. 31–38</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B. Muckenhoupt, "Hardy's inequality with weights" ''Studia Math.'' , '''44''' (1972) pp. 31–38</TD></TR></table> | ||
Latest revision as of 19:43, 5 June 2020
for series
If $ p > 1 $, $ a _ {n} \geq 0 $ and $ A _ {n} = a _ {1} + \dots + a _ {n} $, $ n = 1, 2 \dots $ then
$$ \sum _ {n = 1 } ^ \infty \left ( \frac{A _ {n} }{n} \right ) ^ {p} < \ \left ( \frac{p}{p - 1 } \right ) ^ {p} \sum _ {n = 1 } ^ \infty a _ {n} ^ {p} , $$
except when all the $ a _ {n} $ are zero. The constant $ ( p/( p - 1)) ^ {p} $ in this inequality is best possible.
The Hardy inequalities for integrals are:
$$ \int\limits _ { 0 } ^ \infty x ^ {-} p \left | \int\limits _ { 0 } ^ { x } f ( t) dt \right | ^ {p} dx < \left ( \frac{p}{p - 1 } \right ) ^ {p} \int\limits _ { 0 } ^ \infty | f ( x) | ^ {p} dx,\ \ p > 1 , $$
and
$$ \int\limits _ { 0 } ^ \infty \left | \int\limits _ { x } ^ \infty f ( t) dt \right | ^ {p} dx < p ^ {p} \int\limits _ { 0 } ^ \infty | xf ( x) | ^ {p} dx,\ \ p > 1. $$
The inequalities are valid for all functions for which the right-hand sides are finite, except when $ f $ vanishes almost-everywhere on $ ( 0, + \infty ) $. (In this case the inequalities turn into equalities.) The constants $ ( p/( p - 1)) ^ {p} $ and $ p ^ {p} $ are best possible.
The integral Hardy inequalities can be generalized to arbitrary intervals:
$$ \int\limits _ { a } ^ { b } \left | x ^ {\alpha - 1 } \int\limits _ { a } ^ { x } f ( t) dt \right | ^ {p} dx \leq c \int\limits _ { a } ^ { b } | x ^ \alpha f ( x) | ^ {p} dx,\ \ \alpha < 1 - { \frac{1}{p} } , $$
$$ \int\limits _ { a } ^ { b } \left | x ^ {\alpha - 1 } \int\limits _ { x } ^ { b } f ( t) dt \right | ^ {p} dx \leq c \int\limits _ { a } ^ { b } | x ^ \alpha f ( x) | ^ {p} dx,\ \alpha > 1 - { \frac{1}{p} } , $$
where $ 0 \leq a < b \leq + \infty $, $ 1 < p < + \infty $, and where the $ c $' s are certain constants.
Generalized Hardy inequalities are inequalities of the form
$$ \tag{1 } \int\limits _ { a } ^ { b } \left | \phi ( x) \int\limits _ { a } ^ { x } f ( t) dt \right | ^ {p} \ dx \leq c \int\limits _ { a } ^ { b } | \psi ( x) f ( x) | ^ {p} dx, $$
$$ \tag{2 } \int\limits _ { a } ^ { b } \left | \phi ( x) \int\limits _ { x } ^ { b } f ( t) dt \right | ^ {p} dx \leq c \int\limits _ { a } ^ { b } | \psi ( x) f ( x) | ^ {p} dx. $$
If $ a = 0 $ and $ b = + \infty $, inequality (1) holds if and only if
$$ \sup _ {x > 0 } \left [ \int\limits _ { x } ^ \infty | \phi ( t) | ^ {p} dt \right ] ^ {1/p} \left [ \int\limits _ { 0 } ^ { x } | \psi ( t) | ^ {- p ^ \prime } dt \right ] ^ {1/p ^ \prime } < + \infty , $$
and (2) holds if and only if
$$ \sup _ {x > 0 } \left [ \int\limits _ { 0 } ^ { x } | \phi ( t) | ^ {p} \ dt \right ] ^ {1/p} \left [ \int\limits _ { x } ^ \infty | \psi ( t) | ^ {- p ^ \prime } \ dt \right ] ^ {1/p ^ \prime } < + \infty , $$
$$ { \frac{1}{p} } + { \frac{1}{p ^ \prime } } = 1. $$
References
| [1] | G.H. Hardy, J.E. Littlewood, G. Pólya, "Inequalities" , Cambridge Univ. Press (1934) |
| [2] | S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian) |
| [3] | B. Muckenhoupt, "Hardy's inequality with weights" Studia Math. , 44 (1972) pp. 31–38 |
Hardy inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hardy_inequality&oldid=47176