Difference between revisions of "Hamilton operator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0462402.png | ||
+ | $#A+1 = 26 n = 0 | ||
+ | $#C+1 = 26 : ~/encyclopedia/old_files/data/H046/H.0406240 Hamilton operator, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''nabla operator, $ \nabla $- | |
+ | operator, Hamiltonian'' | ||
− | + | A symbolic first-order differential operator, used for the notation of one of the principal differential operations of vector analysis. In a rectangular Cartesian coordinate system $ x = ( x _ {1} \dots x _ {n} ) $ | |
+ | with unit vectors $ \mathbf e _ {1} \dots \mathbf e _ {n} $, | ||
+ | the Hamilton operator has the form | ||
− | + | $$ | |
+ | \nabla = \ | ||
+ | \sum _ {j = 1 } ^ { n } | ||
+ | \mathbf e _ {j} | ||
+ | \frac \partial {\partial x _ {j} } | ||
+ | . | ||
+ | $$ | ||
− | + | The application of the Hamilton operator to a scalar function $ f $, | |
+ | which is understood as multiplication of the "vector" $ \nabla $ | ||
+ | by the scalar $ f ( x) $, | ||
+ | yields the [[Gradient|gradient]] of $ f $: | ||
− | + | $$ | |
+ | \mathop{\rm grad} f = \ | ||
+ | \nabla f = \ | ||
+ | \sum _ {j = 1 } ^ { n } | ||
+ | \mathbf e _ {j} | ||
+ | \frac{\partial f }{\partial x _ {j} } | ||
+ | , | ||
+ | $$ | ||
− | + | i.e. the vector with components $ ( \partial f / \partial x _ {1} \dots \partial f / \partial x _ {n} ) $. | |
− | The | + | The scalar product of $ \nabla $ |
+ | with a field vector $ \mathbf a = ( a _ {1} \dots a _ {n} ) $ | ||
+ | yields the [[Divergence|divergence]] of $ \mathbf a $: | ||
− | + | $$ | |
+ | \mathop{\rm div} \mathbf a = \ | ||
+ | \nabla \mathbf a = \ | ||
+ | \sum _ {j = 1 } ^ { n } | ||
− | + | \frac{\partial a _ {j} }{\partial x _ {j} } | |
+ | . | ||
+ | $$ | ||
− | + | The vector product of $ \nabla $ | |
+ | with the vectors $ \mathbf a _ {j} = ( a _ {j1} \dots a _ {jn} ) $, | ||
+ | $ j = 1 \dots n - 2 $, | ||
+ | yields the [[Curl|curl]] (rotation, abbreviated by rot) of the fields $ \mathbf a _ {1} \dots \mathbf a _ {n-} 2 $, | ||
+ | i.e. the vector | ||
− | + | $$ | |
+ | [ \nabla , \mathbf a _ {1} \dots \mathbf a _ {n - 2 } ] = \ | ||
+ | \left | | ||
+ | |||
+ | \begin{array}{cccc} | ||
+ | \mathbf e _ {1} &\mathbf e _ {2} &\dots &\mathbf e _ {n} \\ | ||
+ | { | ||
+ | \frac \partial {\partial x _ {1} } | ||
+ | } &{ | ||
+ | \frac \partial {\partial x _ {2} } | ||
+ | } &\dots &{ | ||
+ | \frac \partial {\partial x _ {n} } | ||
+ | } \\ | ||
+ | a _ {11} &a _ {12} &\dots &a _ {1n} \\ | ||
+ | \cdot &\cdot &{} &\cdot \\ | ||
+ | \cdot &\cdot &{} &\cdot \\ | ||
+ | a _ {n - 2,1 } &a _ {n - 2,2 } &\dots &a _ {n - 2,n } \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right | . | ||
+ | $$ | ||
+ | |||
+ | If $ n = 3 $, | ||
+ | |||
+ | $$ | ||
+ | [ \nabla , \mathbf a ] = \nabla \times \mathbf a = \ | ||
+ | \mathop{\rm rot} \mathbf a = \ | ||
+ | \left ( | ||
+ | |||
+ | \frac{\partial a _ {3} }{\partial x _ {2} } | ||
+ | - | ||
+ | |||
+ | \frac{\partial a _ {2} }{\partial x _ {3} } | ||
+ | |||
+ | \right ) | ||
+ | \mathbf e _ {1} + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + | ||
+ | \left ( | ||
+ | \frac{\partial a _ {1} }{\partial x _ {3} } | ||
+ | - | ||
+ | \frac{\partial a _ {3} }{\partial x _ {1} } | ||
+ | \right | ||
+ | ) \mathbf e _ {2} + \left ( | ||
+ | \frac{\partial a _ {2} }{\partial x _ {1} } | ||
+ | - | ||
+ | \frac{\partial a _ {1} }{\partial x _ {2} } | ||
+ | \right ) \mathbf e _ {3} . | ||
+ | $$ | ||
The scalar square of the Hamilton operator yields the [[Laplace operator|Laplace operator]]: | The scalar square of the Hamilton operator yields the [[Laplace operator|Laplace operator]]: | ||
− | + | $$ | |
+ | \Delta = \ | ||
+ | \nabla \cdot \nabla = \ | ||
+ | \sum _ {j = 1 } ^ { n } | ||
+ | |||
+ | \frac{\partial ^ {2} }{\partial x _ {j} ^ {2} } | ||
+ | . | ||
+ | $$ | ||
The following relations are valid: | The following relations are valid: | ||
− | + | $$ | |
+ | [ \nabla , \nabla \phi ] = \ | ||
+ | \mathop{\rm rot} \mathop{\rm grad} \phi = 0, | ||
+ | $$ | ||
− | + | $$ | |
+ | \nabla \cdot \nabla \mathbf a = \mathop{\rm grad} \mathop{\rm div} \mathbf a ,\ \nabla | ||
+ | [ \nabla , \mathbf a ] = \mathop{\rm div} \mathop{\rm rot} \mathbf a = 0, | ||
+ | $$ | ||
− | + | $$ | |
+ | [ \nabla , [ \nabla , \mathbf a ] ] = \mathop{\rm rot} \ | ||
+ | \mathop{\rm rot} \mathbf a ,\ \Delta \phi = \nabla \cdot ( \nabla \phi ) = \mathop{\rm div} \mathop{\rm grad} \phi . | ||
+ | $$ | ||
The Hamilton operator was introduced by W. Hamilton [[#References|[1]]]. | The Hamilton operator was introduced by W. Hamilton [[#References|[1]]]. | ||
Line 41: | Line 145: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.R. Hamilton, "Lectures on quaternions" , Dublin (1853)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.R. Hamilton, "Lectures on quaternions" , Dublin (1853)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 19:43, 5 June 2020
nabla operator, $ \nabla $-
operator, Hamiltonian
A symbolic first-order differential operator, used for the notation of one of the principal differential operations of vector analysis. In a rectangular Cartesian coordinate system $ x = ( x _ {1} \dots x _ {n} ) $ with unit vectors $ \mathbf e _ {1} \dots \mathbf e _ {n} $, the Hamilton operator has the form
$$ \nabla = \ \sum _ {j = 1 } ^ { n } \mathbf e _ {j} \frac \partial {\partial x _ {j} } . $$
The application of the Hamilton operator to a scalar function $ f $, which is understood as multiplication of the "vector" $ \nabla $ by the scalar $ f ( x) $, yields the gradient of $ f $:
$$ \mathop{\rm grad} f = \ \nabla f = \ \sum _ {j = 1 } ^ { n } \mathbf e _ {j} \frac{\partial f }{\partial x _ {j} } , $$
i.e. the vector with components $ ( \partial f / \partial x _ {1} \dots \partial f / \partial x _ {n} ) $.
The scalar product of $ \nabla $ with a field vector $ \mathbf a = ( a _ {1} \dots a _ {n} ) $ yields the divergence of $ \mathbf a $:
$$ \mathop{\rm div} \mathbf a = \ \nabla \mathbf a = \ \sum _ {j = 1 } ^ { n } \frac{\partial a _ {j} }{\partial x _ {j} } . $$
The vector product of $ \nabla $ with the vectors $ \mathbf a _ {j} = ( a _ {j1} \dots a _ {jn} ) $, $ j = 1 \dots n - 2 $, yields the curl (rotation, abbreviated by rot) of the fields $ \mathbf a _ {1} \dots \mathbf a _ {n-} 2 $, i.e. the vector
$$ [ \nabla , \mathbf a _ {1} \dots \mathbf a _ {n - 2 } ] = \ \left | \begin{array}{cccc} \mathbf e _ {1} &\mathbf e _ {2} &\dots &\mathbf e _ {n} \\ { \frac \partial {\partial x _ {1} } } &{ \frac \partial {\partial x _ {2} } } &\dots &{ \frac \partial {\partial x _ {n} } } \\ a _ {11} &a _ {12} &\dots &a _ {1n} \\ \cdot &\cdot &{} &\cdot \\ \cdot &\cdot &{} &\cdot \\ a _ {n - 2,1 } &a _ {n - 2,2 } &\dots &a _ {n - 2,n } \\ \end{array} \right | . $$
If $ n = 3 $,
$$ [ \nabla , \mathbf a ] = \nabla \times \mathbf a = \ \mathop{\rm rot} \mathbf a = \ \left ( \frac{\partial a _ {3} }{\partial x _ {2} } - \frac{\partial a _ {2} }{\partial x _ {3} } \right ) \mathbf e _ {1} + $$
$$ + \left ( \frac{\partial a _ {1} }{\partial x _ {3} } - \frac{\partial a _ {3} }{\partial x _ {1} } \right ) \mathbf e _ {2} + \left ( \frac{\partial a _ {2} }{\partial x _ {1} } - \frac{\partial a _ {1} }{\partial x _ {2} } \right ) \mathbf e _ {3} . $$
The scalar square of the Hamilton operator yields the Laplace operator:
$$ \Delta = \ \nabla \cdot \nabla = \ \sum _ {j = 1 } ^ { n } \frac{\partial ^ {2} }{\partial x _ {j} ^ {2} } . $$
The following relations are valid:
$$ [ \nabla , \nabla \phi ] = \ \mathop{\rm rot} \mathop{\rm grad} \phi = 0, $$
$$ \nabla \cdot \nabla \mathbf a = \mathop{\rm grad} \mathop{\rm div} \mathbf a ,\ \nabla [ \nabla , \mathbf a ] = \mathop{\rm div} \mathop{\rm rot} \mathbf a = 0, $$
$$ [ \nabla , [ \nabla , \mathbf a ] ] = \mathop{\rm rot} \ \mathop{\rm rot} \mathbf a ,\ \Delta \phi = \nabla \cdot ( \nabla \phi ) = \mathop{\rm div} \mathop{\rm grad} \phi . $$
The Hamilton operator was introduced by W. Hamilton [1].
References
[1] | W.R. Hamilton, "Lectures on quaternions" , Dublin (1853) |
Comments
See also Vector calculus.
References
[a1] | D.E. Rutherford, "Vector mechanics" , Oliver & Boyd (1949) |
[a2] | T.M. Apostol, "Calculus" , 1–2 , Blaisdell (1964) |
[a3] | H. Holman, H. Rummler, "Alternierende Differentialformen" , B.I. Wissenschaftsverlag Mannheim (1972) |
Hamilton operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hamilton_operator&oldid=47169