Difference between revisions of "Grötzsch theorems"
Ulf Rehmann (talk | contribs) m (moved Grotzsch theorems to Grötzsch theorems over redirect: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | g0452001.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/G045/G.0405200 Gr\AGotzsch theorems | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
Various results on conformal and quasi-conformal mappings obtained by H. Grötzsch . He developed the strip method, which is the first general form of the method of conformal moduli (cf. [[Extremal metric, method of the|Extremal metric, method of the]]; [[Strip method (analytic functions)|Strip method (analytic functions)]]), and used it in his systematic study of a large number of extremal problems of conformal mapping of multiply-connected (including infinitely-connected) domains, including the problems of the existence, uniqueness and geometric properties of extremal mappings. A few of the simpler Grötzsch theorems are presented below. | Various results on conformal and quasi-conformal mappings obtained by H. Grötzsch . He developed the strip method, which is the first general form of the method of conformal moduli (cf. [[Extremal metric, method of the|Extremal metric, method of the]]; [[Strip method (analytic functions)|Strip method (analytic functions)]]), and used it in his systematic study of a large number of extremal problems of conformal mapping of multiply-connected (including infinitely-connected) domains, including the problems of the existence, uniqueness and geometric properties of extremal mappings. A few of the simpler Grötzsch theorems are presented below. | ||
− | Of all univalent conformal mappings | + | Of all univalent conformal mappings $ w = f ( z) $ |
+ | of a given annulus $ K _ {R} = \{ {z } : {R < | z | < 1 } \} $ | ||
+ | under which the unit circle $ \Gamma = \{ {z } : {| z | = 1 } \} $ | ||
+ | is mapped onto itself, the maximum diameter of the image of the circle $ \Gamma _ {R} = \{ {z } : {| z | = R } \} $ | ||
+ | is attained if and only if the boundary component $ f ( \Gamma _ {R} ) $ | ||
+ | is a rectilinear segment with its centre at the point $ w = 0 $. | ||
+ | A similar result is valid for multiply-connected domains. | ||
− | Out of all univalent conformal mappings | + | Out of all univalent conformal mappings $ w = f ( z) $ |
+ | of a given multiply-connected domain $ B \ni \infty $ | ||
+ | with expansion $ f ( z) = z + O ( 1) $ | ||
+ | $ ( z \rightarrow \infty ) $ | ||
+ | at infinity and normalization $ f ( z _ {0} ) = 0 $ | ||
+ | at a given point $ z _ {0} \in B $, | ||
+ | the maximum of $ | f ^ { \prime } ( z _ {0} ) | $, | ||
+ | and the maximum (minimum) of $ | f ( z _ {1} ) | $ | ||
+ | at a given point $ z _ {1} \in B $, | ||
+ | $ z _ {1} \neq z _ {0} $, | ||
+ | are attained only on mappings that map each boundary component of $ B $, | ||
+ | respectively, to an arc of a circle with centre at the point $ w = 0 $, | ||
+ | or to an arc of an ellipse (hyperbola) with foci at the points $ w = 0 $ | ||
+ | and $ w = w ^ \prime = f ( z _ {1} ) $. | ||
+ | In each one of these problems the extremal mapping exists and is unique. In this class of mappings, for a given $ z _ {1} \in B $, | ||
+ | the disc | ||
− | + | $$ | |
+ | \left \{ {w } : { | ||
+ | \left | | ||
+ | w - { | ||
+ | \frac{1}{2} | ||
+ | } ( w ^ \prime + w ^ {\prime\prime} ) \ | ||
+ | \right | \leq \ | ||
+ | { | ||
+ | \frac{1}{2} | ||
+ | } | w ^ \prime - w ^ {\prime\prime} | \ | ||
+ | } \right \} | ||
+ | $$ | ||
− | is the range of the function | + | is the range of the function $ \Phi ( f ) = \mathop{\rm ln} ( f ( z _ {1} )/z _ {1} ) $. |
+ | Each boundary point of this disc is a value of $ \Phi $ | ||
+ | on a unique mapping in the class under study with specific geometric properties. | ||
Grötzsch was the first to propose a form of representation of a [[Quasi-conformal mapping|quasi-conformal mapping]], and to apply to such a mappings many extremal results which he had formerly obtained for conformal mappings. | Grötzsch was the first to propose a form of representation of a [[Quasi-conformal mapping|quasi-conformal mapping]], and to apply to such a mappings many extremal results which he had formerly obtained for conformal mappings. | ||
Line 13: | Line 59: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Grötzsch, "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche I" ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl.'' , '''81''' (1929) pp. 38–47</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Grötzsch, "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche II" ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl.'' , '''81''' (1929) pp. 217–221</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> H. Grötzsch, ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl.'' , '''82''' (1930) pp. 69–80</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> H. Grötzsch, "Ueber die Verschiebung bei schlichter konformer Abbildung schlichter Bereiche II" ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl.'' , '''84''' (1932) pp. 269–278</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958)</TD></TR></table> | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Grötzsch, "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche I" ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl.'' , '''81''' (1929) pp. 38–47</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Grötzsch, "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche II" ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl.'' , '''81''' (1929) pp. 217–221</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> H. Grötzsch, ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl.'' , '''82''' (1930) pp. 69–80</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> H. Grötzsch, "Ueber die Verschiebung bei schlichter konformer Abbildung schlichter Bereiche II" ''Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl.'' , '''84''' (1932) pp. 269–278</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 19:42, 5 June 2020
Various results on conformal and quasi-conformal mappings obtained by H. Grötzsch . He developed the strip method, which is the first general form of the method of conformal moduli (cf. Extremal metric, method of the; Strip method (analytic functions)), and used it in his systematic study of a large number of extremal problems of conformal mapping of multiply-connected (including infinitely-connected) domains, including the problems of the existence, uniqueness and geometric properties of extremal mappings. A few of the simpler Grötzsch theorems are presented below.
Of all univalent conformal mappings $ w = f ( z) $ of a given annulus $ K _ {R} = \{ {z } : {R < | z | < 1 } \} $ under which the unit circle $ \Gamma = \{ {z } : {| z | = 1 } \} $ is mapped onto itself, the maximum diameter of the image of the circle $ \Gamma _ {R} = \{ {z } : {| z | = R } \} $ is attained if and only if the boundary component $ f ( \Gamma _ {R} ) $ is a rectilinear segment with its centre at the point $ w = 0 $. A similar result is valid for multiply-connected domains.
Out of all univalent conformal mappings $ w = f ( z) $ of a given multiply-connected domain $ B \ni \infty $ with expansion $ f ( z) = z + O ( 1) $ $ ( z \rightarrow \infty ) $ at infinity and normalization $ f ( z _ {0} ) = 0 $ at a given point $ z _ {0} \in B $, the maximum of $ | f ^ { \prime } ( z _ {0} ) | $, and the maximum (minimum) of $ | f ( z _ {1} ) | $ at a given point $ z _ {1} \in B $, $ z _ {1} \neq z _ {0} $, are attained only on mappings that map each boundary component of $ B $, respectively, to an arc of a circle with centre at the point $ w = 0 $, or to an arc of an ellipse (hyperbola) with foci at the points $ w = 0 $ and $ w = w ^ \prime = f ( z _ {1} ) $. In each one of these problems the extremal mapping exists and is unique. In this class of mappings, for a given $ z _ {1} \in B $, the disc
$$ \left \{ {w } : { \left | w - { \frac{1}{2} } ( w ^ \prime + w ^ {\prime\prime} ) \ \right | \leq \ { \frac{1}{2} } | w ^ \prime - w ^ {\prime\prime} | \ } \right \} $$
is the range of the function $ \Phi ( f ) = \mathop{\rm ln} ( f ( z _ {1} )/z _ {1} ) $. Each boundary point of this disc is a value of $ \Phi $ on a unique mapping in the class under study with specific geometric properties.
Grötzsch was the first to propose a form of representation of a quasi-conformal mapping, and to apply to such a mappings many extremal results which he had formerly obtained for conformal mappings.
References
[1a] | H. Grötzsch, "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche I" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl. , 81 (1929) pp. 38–47 |
[1b] | H. Grötzsch, "Ueber die Verzerrung bei schlichter konformer Abbildung mehrfach zusammenhängender Bereiche II" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl. , 81 (1929) pp. 217–221 |
[1c] | H. Grötzsch, Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl. , 82 (1930) pp. 69–80 |
[1d] | H. Grötzsch, "Ueber die Verschiebung bei schlichter konformer Abbildung schlichter Bereiche II" Ber. Verh. Sächsisch. Akad. Wiss. Leipzig. Math.-Naturwiss. Kl. , 84 (1932) pp. 269–278 |
[2] | J.A. Jenkins, "Univalent functions and conformal mappings" , Springer (1958) |
Comments
Grötzsch' theorems are distortion theorems.
Cf. also Grötzsch principle.
Grötzsch theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gr%C3%B6tzsch_theorems&oldid=47148