Difference between revisions of "Group velocity"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | g0453001.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/G045/G.0405300 Group velocity | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A quantity describing the rate of propagation of a wave process in dispersing media. Let the wave process be described by the [[Wave equation|wave equation]] with variable coefficients: | A quantity describing the rate of propagation of a wave process in dispersing media. Let the wave process be described by the [[Wave equation|wave equation]] with variable coefficients: | ||
− | + | $$ | |
− | + | \frac{1}{c ^ {2} ( z) } | |
+ | |||
+ | u _ {tt} - u _ {xx} - u _ {zz} = 0, | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | 0 \leq z \langle \infty ,\ - \infty < x < \infty ,\ c ( z) \rangle 0. | ||
+ | $$ | ||
The solutions sought satisfy the conditions | The solutions sought satisfy the conditions | ||
− | + | $$ | |
+ | \left . u \right | _ {z = 0 } = 0,\ \ | ||
+ | u _ {z \rightarrow \infty } \rightarrow 0 , | ||
+ | $$ | ||
and have the form | and have the form | ||
− | + | $$ | |
+ | u = \ | ||
+ | e ^ {i \omega ( k) t - ikx } | ||
+ | v ( z). | ||
+ | $$ | ||
+ | |||
+ | The function $ v ( z) $ | ||
+ | should be a non-zero solution of the one-dimensional boundary value problem | ||
+ | |||
+ | $$ | ||
+ | v ^ {\prime\prime} + | ||
+ | \left ( | ||
+ | k ^ {2} - | ||
− | + | \frac{\omega ^ {2} }{c ^ {2} ( z) } | |
− | + | \right ) | |
+ | v = 0; \ \ | ||
+ | \left . v \right | _ {z = 0 } = 0; \ \ | ||
+ | v _ {z \rightarrow \infty } \rightarrow 0. | ||
+ | $$ | ||
− | If, in a certain range of variation of | + | If, in a certain range of variation of $ k $, |
+ | there exists a finite number of $ \omega _ {j} ( k), $ | ||
+ | $ k = 1, 2 \dots $ | ||
+ | for which this problem has a non-zero solution $ v _ {j} $, | ||
+ | then the quantities $ V = \omega _ {j} ( k)/k $ | ||
+ | and $ U = d \omega _ {j} /d k $ | ||
+ | are said to be, respectively, the phase and group velocities of the wave | ||
− | + | $$ | |
+ | u _ {j} = \ | ||
+ | e ^ {i \omega ( k) t - ikx } | ||
+ | v _ {j} ( z). | ||
+ | $$ | ||
The two velocities are related by the Rayleigh formula: | The two velocities are related by the Rayleigh formula: | ||
− | + | $$ | |
+ | U = V - | ||
− | where | + | \frac{\lambda dV }{d \lambda } |
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ \lambda $ | ||
+ | is the wave-length. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.I. Mandel'shtam, , ''Complete works'' , '''5''' , Leningrad (1950) pp. 315–319; 419–425; 439–467 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.S. Gorelik, "Oscillations and waves" , Moscow-Leningrad (1950) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.I. Mandel'shtam, , ''Complete works'' , '''5''' , Leningrad (1950) pp. 315–319; 419–425; 439–467 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.S. Gorelik, "Oscillations and waves" , Moscow-Leningrad (1950) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Brillouin, "Les tenseur en mécanique et en élasticité" , Masson (1949)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Brillouin, "Les tenseur en mécanique et en élasticité" , Masson (1949)</TD></TR></table> |
Revision as of 19:42, 5 June 2020
A quantity describing the rate of propagation of a wave process in dispersing media. Let the wave process be described by the wave equation with variable coefficients:
$$ \frac{1}{c ^ {2} ( z) } u _ {tt} - u _ {xx} - u _ {zz} = 0, $$
$$ 0 \leq z \langle \infty ,\ - \infty < x < \infty ,\ c ( z) \rangle 0. $$
The solutions sought satisfy the conditions
$$ \left . u \right | _ {z = 0 } = 0,\ \ u _ {z \rightarrow \infty } \rightarrow 0 , $$
and have the form
$$ u = \ e ^ {i \omega ( k) t - ikx } v ( z). $$
The function $ v ( z) $ should be a non-zero solution of the one-dimensional boundary value problem
$$ v ^ {\prime\prime} + \left ( k ^ {2} - \frac{\omega ^ {2} }{c ^ {2} ( z) } \right ) v = 0; \ \ \left . v \right | _ {z = 0 } = 0; \ \ v _ {z \rightarrow \infty } \rightarrow 0. $$
If, in a certain range of variation of $ k $, there exists a finite number of $ \omega _ {j} ( k), $ $ k = 1, 2 \dots $ for which this problem has a non-zero solution $ v _ {j} $, then the quantities $ V = \omega _ {j} ( k)/k $ and $ U = d \omega _ {j} /d k $ are said to be, respectively, the phase and group velocities of the wave
$$ u _ {j} = \ e ^ {i \omega ( k) t - ikx } v _ {j} ( z). $$
The two velocities are related by the Rayleigh formula:
$$ U = V - \frac{\lambda dV }{d \lambda } , $$
where $ \lambda $ is the wave-length.
References
[1] | L.I. Mandel'shtam, , Complete works , 5 , Leningrad (1950) pp. 315–319; 419–425; 439–467 (In Russian) |
[2] | G.S. Gorelik, "Oscillations and waves" , Moscow-Leningrad (1950) (In Russian) |
Comments
References
[a1] | L. Brillouin, "Les tenseur en mécanique et en élasticité" , Masson (1949) |
Group velocity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Group_velocity&oldid=47145