Difference between revisions of "Gorenstein ring"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g0446201.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/G044/G.0404620 Gorenstein ring | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A commutative local [[Noetherian ring|Noetherian ring]] of finite injective dimension (cf. [[Homological dimension|Homological dimension]]). A local ring $ A $ | |
+ | with a maximal ideal $ \mathfrak m $ | ||
+ | and residue field $ k $ | ||
+ | of dimension $ n $ | ||
+ | is a Gorenstein ring if and only if one of the following equivalent conditions is satisfied: | ||
− | + | 1) $ \mathop{\rm Ext} _ {A} ^ {i} ( k, A) = 0 $ | |
+ | for $ i \neq n $ | ||
+ | and $ \mathop{\rm Ext} _ {A} ^ {n} ( k, A) \simeq k $. | ||
− | + | 2) For any maximal $ A $- | |
+ | sequence $ x _ {1} \dots x _ {n} $( | ||
+ | cf. [[Depth of a module|Depth of a module]]) the ideal $ ( x _ {1} \dots x _ {n} ) $ | ||
+ | is irreducible. | ||
− | + | 3) The functor $ M \mapsto \mathop{\rm Ext} _ {A} ^ {n} ( M, A) $, | |
+ | defined on the category of $ A $- | ||
+ | modules of finite length, is isomorphic to the functor $ M \mapsto \mathop{\rm Hom} _ {A} ( M, I) $, | ||
+ | where $ I $ | ||
+ | is the injective envelope of $ k $. | ||
− | + | 4) The ring $ A $ | |
+ | is a [[Cohen–Macaulay ring|Cohen–Macaulay ring]] (in particular, all local cohomology groups $ H _ {m} ^ {i} ( A) = 0 $ | ||
+ | for $ i \neq n $), | ||
+ | and $ H _ {m} ^ {n} ( A) $ | ||
+ | coincides with the injective envelope of $ k $. | ||
+ | |||
+ | 5) For any $ A $- | ||
+ | module $ M $ | ||
+ | of finite type there exists a canonical isomorphism | ||
+ | |||
+ | $$ | ||
+ | H _ {m} ^ {i} ( M) \simeq \ | ||
+ | \mathop{\rm Hom} ( \mathop{\rm Ext} ^ {n - i } ( M, A), H _ {m} ^ {n} ( A)) | ||
+ | $$ | ||
(local duality). | (local duality). | ||
Line 17: | Line 51: | ||
Examples of Gorenstein rings include regular rings and also their quotient rings by an ideal generated by a regular sequence of elements (complete intersections). | Examples of Gorenstein rings include regular rings and also their quotient rings by an ideal generated by a regular sequence of elements (complete intersections). | ||
− | If a Gorenstein ring | + | If a Gorenstein ring $ A $ |
+ | is a one-dimensional [[Integral domain|integral domain]], then this ring has the following numerical characterization. Let $ \overline{A}\; $ | ||
+ | be the integral closure of $ A $ | ||
+ | in its field of fractions, let $ F $ | ||
+ | be the conductor (cf. [[Conductor of an integral closure|Conductor of an integral closure]]) of $ A $ | ||
+ | in $ \overline{A}\; $, | ||
+ | let $ C = \mathop{\rm dim} _ {k} \overline{A}\; /F $, | ||
+ | and let $ \delta = \mathop{\rm dim} _ {k} \overline{A}\; /A $. | ||
+ | The ring $ A $ | ||
+ | is then a Gorenstein ring if and only if $ C = 2 \delta $. | ||
+ | This equality was first demonstrated by D. Gorenstein [[#References|[1]]] for the local ring of an irreducible plane algebraic curve. A localization of a Gorenstein ring is a Gorenstein ring. In this connection an extension of the concept of a Gorenstein ring arose: A Noetherian ring (or scheme) is said to be a Gorenstein ring (scheme) if all the localizations of this ring by prime ideals (or, correspondingly, all local rings of the scheme) are local Gorenstein rings (in the former definition). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gorenstein, "An arithmetic theory of adjoint plane curves" ''Trans. Amer. Math. Soc.'' , '''72''' (1952) pp. 414–436</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.L. Abramov, E.S. Golod, "Homology algebra of the Koszul complex of a local Gorenstein ring" ''Math. Notes'' , '''9''' : 1 (1971) pp. 30–32 ''Mat. Zametki'' , '''9''' : 1 (1971) pp. 53–58</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Grothendieck, "Géométrie formelle et géométrie algébrique" ''Sem. Bourbaki'' , '''11''' (1958–1959)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R. Hartshorne, "Local cohomology, a seminar given by A. Grothendieck" , Springer (1967)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R. Hartshorne, "Residues and duality" , Springer (1966)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Bass, "On the ubiquity of Gorenstein rings" ''Math. Z.'' , '''82''' (1963) pp. 8–28</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gorenstein, "An arithmetic theory of adjoint plane curves" ''Trans. Amer. Math. Soc.'' , '''72''' (1952) pp. 414–436</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.L. Abramov, E.S. Golod, "Homology algebra of the Koszul complex of a local Gorenstein ring" ''Math. Notes'' , '''9''' : 1 (1971) pp. 30–32 ''Mat. Zametki'' , '''9''' : 1 (1971) pp. 53–58</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Grothendieck, "Géométrie formelle et géométrie algébrique" ''Sem. Bourbaki'' , '''11''' (1958–1959)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> R. Hartshorne, "Local cohomology, a seminar given by A. Grothendieck" , Springer (1967)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R. Hartshorne, "Residues and duality" , Springer (1966)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> H. Bass, "On the ubiquity of Gorenstein rings" ''Math. Z.'' , '''82''' (1963) pp. 8–28</TD></TR></table> |
Latest revision as of 19:42, 5 June 2020
A commutative local Noetherian ring of finite injective dimension (cf. Homological dimension). A local ring $ A $
with a maximal ideal $ \mathfrak m $
and residue field $ k $
of dimension $ n $
is a Gorenstein ring if and only if one of the following equivalent conditions is satisfied:
1) $ \mathop{\rm Ext} _ {A} ^ {i} ( k, A) = 0 $ for $ i \neq n $ and $ \mathop{\rm Ext} _ {A} ^ {n} ( k, A) \simeq k $.
2) For any maximal $ A $- sequence $ x _ {1} \dots x _ {n} $( cf. Depth of a module) the ideal $ ( x _ {1} \dots x _ {n} ) $ is irreducible.
3) The functor $ M \mapsto \mathop{\rm Ext} _ {A} ^ {n} ( M, A) $, defined on the category of $ A $- modules of finite length, is isomorphic to the functor $ M \mapsto \mathop{\rm Hom} _ {A} ( M, I) $, where $ I $ is the injective envelope of $ k $.
4) The ring $ A $ is a Cohen–Macaulay ring (in particular, all local cohomology groups $ H _ {m} ^ {i} ( A) = 0 $ for $ i \neq n $), and $ H _ {m} ^ {n} ( A) $ coincides with the injective envelope of $ k $.
5) For any $ A $- module $ M $ of finite type there exists a canonical isomorphism
$$ H _ {m} ^ {i} ( M) \simeq \ \mathop{\rm Hom} ( \mathop{\rm Ext} ^ {n - i } ( M, A), H _ {m} ^ {n} ( A)) $$
(local duality).
Examples of Gorenstein rings include regular rings and also their quotient rings by an ideal generated by a regular sequence of elements (complete intersections).
If a Gorenstein ring $ A $ is a one-dimensional integral domain, then this ring has the following numerical characterization. Let $ \overline{A}\; $ be the integral closure of $ A $ in its field of fractions, let $ F $ be the conductor (cf. Conductor of an integral closure) of $ A $ in $ \overline{A}\; $, let $ C = \mathop{\rm dim} _ {k} \overline{A}\; /F $, and let $ \delta = \mathop{\rm dim} _ {k} \overline{A}\; /A $. The ring $ A $ is then a Gorenstein ring if and only if $ C = 2 \delta $. This equality was first demonstrated by D. Gorenstein [1] for the local ring of an irreducible plane algebraic curve. A localization of a Gorenstein ring is a Gorenstein ring. In this connection an extension of the concept of a Gorenstein ring arose: A Noetherian ring (or scheme) is said to be a Gorenstein ring (scheme) if all the localizations of this ring by prime ideals (or, correspondingly, all local rings of the scheme) are local Gorenstein rings (in the former definition).
References
[1] | D. Gorenstein, "An arithmetic theory of adjoint plane curves" Trans. Amer. Math. Soc. , 72 (1952) pp. 414–436 |
[2] | J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959) |
[3] | L.L. Abramov, E.S. Golod, "Homology algebra of the Koszul complex of a local Gorenstein ring" Math. Notes , 9 : 1 (1971) pp. 30–32 Mat. Zametki , 9 : 1 (1971) pp. 53–58 |
[4] | A. Grothendieck, "Géométrie formelle et géométrie algébrique" Sem. Bourbaki , 11 (1958–1959) |
[5] | R. Hartshorne, "Local cohomology, a seminar given by A. Grothendieck" , Springer (1967) |
[6] | R. Hartshorne, "Residues and duality" , Springer (1966) |
[7] | H. Bass, "On the ubiquity of Gorenstein rings" Math. Z. , 82 (1963) pp. 8–28 |
Gorenstein ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gorenstein_ring&oldid=47105