Namespaces
Variants
Actions

Difference between revisions of "Generating operator of a semi-group"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
The derivative at zero of a semi-group of linear operators (cf. [[Semi-group of operators|Semi-group of operators]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439201.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439202.png" />, acting on a complex Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439203.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439204.png" /> is continuous in the operator norm, then it has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439205.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439206.png" /> is a bounded operator,
+
<!--
 +
g0439201.png
 +
$#A+1 = 70 n = 0
 +
$#C+1 = 70 : ~/encyclopedia/old_files/data/G043/G.0403920 Generating operator of a semi\AAhgroup
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439207.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439208.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g0439209.png" /> is the generating operator of this semi-group. Conversely, if the limit on the left-hand side exists, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392010.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392011.png" />.
+
The derivative at zero of a semi-group of linear operators (cf. [[Semi-group of operators|Semi-group of operators]])  $  T ( t) $,  
 +
$  0 < t < \infty $,
 +
acting on a complex Banach space  $  X $.  
 +
If  $  T ( t) $
 +
is continuous in the operator norm, then it has the form  $  T ( t) = e ^ {t A _ {0} } $,  
 +
where  $  A _ {0} $
 +
is a bounded operator,
  
A more complicated situation arises when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392012.png" /> is only a [[Strongly-continuous semi-group|strongly-continuous semi-group]]. In this case the limit (1) does not necessarily exist for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392013.png" />. The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392014.png" />, defined on the linear set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392015.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392016.png" /> for which the limit exists, is linear and unbounded, and is called the infinitesimal operator. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392017.png" /> is defined on all elements of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392020.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392021.png" /> denotes the closure of the union of the range of values of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392024.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392025.png" /> and, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392026.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392027.png" />. The values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392028.png" /> also lie in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392029.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392030.png" /> is an unbounded operator, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392031.png" /> is a set of the first category in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392032.png" />.
+
$$ \tag{1 }
 +
\lim\limits _ {t \rightarrow 0
 +
\frac{T ( t) x - x }{t}
 +
  = A _ {0} x
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392033.png" /> does not contain elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392034.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392035.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392036.png" /> has a closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392037.png" />, which is also called the generating operator of the semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392038.png" />. In this case, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392039.png" />,
+
for any  $  x \in X $,  
 +
and  $  A _ {0} $
 +
is the generating operator of this semi-group. Conversely, if the limit on the left-hand side exists, for all  $  x \in X $,
 +
then  $  T ( t) = e ^ {t A _ {0} } $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392040.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
A more complicated situation arises when  $  T ( t) $
 +
is only a [[Strongly-continuous semi-group|strongly-continuous semi-group]]. In this case the limit (1) does not necessarily exist for every  $  x $.
 +
The operator  $  A _ {0} $,
 +
defined on the linear set  $  D ( A _ {0} ) $
 +
of all  $  x $
 +
for which the limit exists, is linear and unbounded, and is called the infinitesimal operator. In particular,  $  A _ {0} $
 +
is defined on all elements of the form  $  \int _  \alpha  ^  \beta  T ( t) y  dt $,
 +
$  \alpha , \beta > 0 $,
 +
$  y \in X $.  
 +
If  $  X _ {0} $
 +
denotes the closure of the union of the range of values of all  $  T ( t) $,
 +
$  t > 0 $,
 +
then  $  D ( A _ {0} ) $
 +
is dense in  $  X _ {0} $
 +
and, moreover,  $  \cap _ {n} D ( A _ {0}  ^ {n} ) $
 +
is dense in  $  X _ {0} $.  
 +
The values of  $  A _ {0} $
 +
also lie in  $  X _ {0} $.  
 +
If  $  A _ {0} $
 +
is an unbounded operator, then  $  D ( A _ {0)} $
 +
is a set of the first category in  $  X _ {0} $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392041.png" /></td> </tr></table>
+
If  $  X _ {0} $
 +
does not contain elements  $  x $
 +
for which  $  T ( t) x \equiv 0 $,
 +
then  $  A _ {0} $
 +
has a closure  $  A = \overline{ {A _ {0} }}\; $,
 +
which is also called the generating operator of the semi-group  $  T ( t) $.  
 +
In this case, for  $  x \in D ( A) $,
  
These equations define an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392042.png" /> which is, generally speaking, an extension of the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392043.png" />. It is also called the generalized generating operator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392044.png" />.
+
$$ \tag{2 }
 +
T ( t) x - T ( s) x  = \int\limits _ { s } ^ { t }  T ( \tau ) Ax  d \tau ,
 +
$$
  
On the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392045.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392046.png" /> for which the improper integral
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392047.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
\frac{dT ( t) x }{dt}
 +
  = A _ {0} T ( t) x  = T ( t) Ax .
 +
$$
 +
 
 +
These equations define an operator  $  A $
 +
which is, generally speaking, an extension of the closure of  $  A _ {0} $.  
 +
It is also called the generalized generating operator of  $  T ( t) $.
 +
 
 +
On the set  $  D _ {R} $
 +
of all  $  x \in X $
 +
for which the improper integral
 +
 
 +
$$ \tag{3 }
 +
\int\limits _ { 0 } ^ { t }  T ( s) x  ds
 +
$$
  
 
converges, one defines the operator
 
converges, one defines the operator
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392048.png" /></td> </tr></table>
+
$$
 +
R ( \lambda ) x  = \lim\limits _ {t \rightarrow 0 }  \int\limits _ { t } ^  \infty  e ^
 +
{- \lambda s } T ( s) x  ds
 +
$$
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392049.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392050.png" /> is the type of the semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392051.png" />. This operator has the following properties:
+
for $  \mathop{\rm Re}  \lambda > \omega $,  
 +
where $  \omega $
 +
is the type of the semi-group $  T ( t) $.  
 +
This operator has the following properties:
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392052.png" />;
+
1) $  R ( \lambda ) D _ {R} \subset  D _ {R} $;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392053.png" />;
+
2) $  R ( \lambda ) x - R ( \mu ) x = ( \mu - \lambda ) R ( \lambda ) R ( \mu ) x $;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392055.png" />;
+
3) $  R ( \lambda ) ( \lambda I - A _ {0} ) x = x $,  
 +
$  x \in D ( A _ {0} ) $;
  
4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392057.png" />.
+
4) $  ( \lambda I - A ) R ( \lambda ) x = x $,  
 +
$  x \in D _ {R} \cap X _ {0} $.
  
If the integral (3) converges absolutely for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392058.png" />, then the generating operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392059.png" /> exists if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392061.png" />, implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392062.png" />; the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392063.png" /> is bounded and, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392064.png" />, it coincides with the [[Resolvent|resolvent]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392065.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392066.png" /> to be closed (i.e. for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392067.png" />) it is necessary and sufficient that
+
If the integral (3) converges absolutely for any $  x \in X $,  
 +
then the generating operator $  A $
 +
exists if and only if $  T ( t) x \equiv 0 $,  
 +
$  x \in X $,  
 +
implies $  x = 0 $;  
 +
the operator $  R ( \lambda ) $
 +
is bounded and, if $  X = X _ {0} $,  
 +
it coincides with the [[Resolvent|resolvent]] of $  A $.  
 +
For $  A _ {0} $
 +
to be closed (i.e. for $  A = A _ {0} $)  
 +
it is necessary and sufficient that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392068.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {t \rightarrow 0 } 
 +
\frac{1}{t}
 +
\int\limits _ { 0 } ^ { t }  T ( s) x  ds  = x
 +
$$
  
for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392069.png" />.
+
for any $  x \in X _ {0} $.
  
The basic problem in the theory of operator semi-groups is to establish relations between properties of a semi-group and properties of its generating operator, where the latter are usually formulated in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043920/g04392070.png" />.
+
The basic problem in the theory of operator semi-groups is to establish relations between properties of a semi-group and properties of its generating operator, where the latter are usually formulated in terms of $  R ( \lambda ) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) {{MR|0089373}} {{ZBL|0392.46001}} {{ZBL|0033.06501}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.P. Zabreiko, A.V. Zafievskii, "On a certain class of semigroups" ''Soviet Math. Dokl.'' , '''10''' : 6 (1969) pp. 1523–1526 ''Dokl. Akad. Nauk'' , '''189''' : 5 (1969) pp. 934–937 {{MR|264459}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.V. Zafievskii, "On semigroups with singularities summable with a power-weight at zero" ''Soviet Math. Dokl.'' , '''11''' : 6 (1970) pp. 1408–1411 ''Dokl. Akad. Nauk'' , '''195''' : 1 (1970) pp. 24–27 {{MR|278121}} {{ZBL|}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) {{MR|0089373}} {{ZBL|0392.46001}} {{ZBL|0033.06501}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.P. Zabreiko, A.V. Zafievskii, "On a certain class of semigroups" ''Soviet Math. Dokl.'' , '''10''' : 6 (1969) pp. 1523–1526 ''Dokl. Akad. Nauk'' , '''189''' : 5 (1969) pp. 934–937 {{MR|264459}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.V. Zafievskii, "On semigroups with singularities summable with a power-weight at zero" ''Soviet Math. Dokl.'' , '''11''' : 6 (1970) pp. 1408–1411 ''Dokl. Akad. Nauk'' , '''195''' : 1 (1970) pp. 24–27 {{MR|278121}} {{ZBL|}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian) {{MR|0342804}} {{ZBL|0179.20701}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Pazy, "Semigroups of linear operators and applications to partial differential equations" , Springer (1983) {{MR|0710486}} {{ZBL|0516.47023}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian) {{MR|0342804}} {{ZBL|0179.20701}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Pazy, "Semigroups of linear operators and applications to partial differential equations" , Springer (1983) {{MR|0710486}} {{ZBL|0516.47023}} </TD></TR></table>

Latest revision as of 19:41, 5 June 2020


The derivative at zero of a semi-group of linear operators (cf. Semi-group of operators) $ T ( t) $, $ 0 < t < \infty $, acting on a complex Banach space $ X $. If $ T ( t) $ is continuous in the operator norm, then it has the form $ T ( t) = e ^ {t A _ {0} } $, where $ A _ {0} $ is a bounded operator,

$$ \tag{1 } \lim\limits _ {t \rightarrow 0 } \frac{T ( t) x - x }{t} = A _ {0} x $$

for any $ x \in X $, and $ A _ {0} $ is the generating operator of this semi-group. Conversely, if the limit on the left-hand side exists, for all $ x \in X $, then $ T ( t) = e ^ {t A _ {0} } $.

A more complicated situation arises when $ T ( t) $ is only a strongly-continuous semi-group. In this case the limit (1) does not necessarily exist for every $ x $. The operator $ A _ {0} $, defined on the linear set $ D ( A _ {0} ) $ of all $ x $ for which the limit exists, is linear and unbounded, and is called the infinitesimal operator. In particular, $ A _ {0} $ is defined on all elements of the form $ \int _ \alpha ^ \beta T ( t) y dt $, $ \alpha , \beta > 0 $, $ y \in X $. If $ X _ {0} $ denotes the closure of the union of the range of values of all $ T ( t) $, $ t > 0 $, then $ D ( A _ {0} ) $ is dense in $ X _ {0} $ and, moreover, $ \cap _ {n} D ( A _ {0} ^ {n} ) $ is dense in $ X _ {0} $. The values of $ A _ {0} $ also lie in $ X _ {0} $. If $ A _ {0} $ is an unbounded operator, then $ D ( A _ {0)} $ is a set of the first category in $ X _ {0} $.

If $ X _ {0} $ does not contain elements $ x $ for which $ T ( t) x \equiv 0 $, then $ A _ {0} $ has a closure $ A = \overline{ {A _ {0} }}\; $, which is also called the generating operator of the semi-group $ T ( t) $. In this case, for $ x \in D ( A) $,

$$ \tag{2 } T ( t) x - T ( s) x = \int\limits _ { s } ^ { t } T ( \tau ) Ax d \tau , $$

$$ \frac{dT ( t) x }{dt} = A _ {0} T ( t) x = T ( t) Ax . $$

These equations define an operator $ A $ which is, generally speaking, an extension of the closure of $ A _ {0} $. It is also called the generalized generating operator of $ T ( t) $.

On the set $ D _ {R} $ of all $ x \in X $ for which the improper integral

$$ \tag{3 } \int\limits _ { 0 } ^ { t } T ( s) x ds $$

converges, one defines the operator

$$ R ( \lambda ) x = \lim\limits _ {t \rightarrow 0 } \int\limits _ { t } ^ \infty e ^ {- \lambda s } T ( s) x ds $$

for $ \mathop{\rm Re} \lambda > \omega $, where $ \omega $ is the type of the semi-group $ T ( t) $. This operator has the following properties:

1) $ R ( \lambda ) D _ {R} \subset D _ {R} $;

2) $ R ( \lambda ) x - R ( \mu ) x = ( \mu - \lambda ) R ( \lambda ) R ( \mu ) x $;

3) $ R ( \lambda ) ( \lambda I - A _ {0} ) x = x $, $ x \in D ( A _ {0} ) $;

4) $ ( \lambda I - A ) R ( \lambda ) x = x $, $ x \in D _ {R} \cap X _ {0} $.

If the integral (3) converges absolutely for any $ x \in X $, then the generating operator $ A $ exists if and only if $ T ( t) x \equiv 0 $, $ x \in X $, implies $ x = 0 $; the operator $ R ( \lambda ) $ is bounded and, if $ X = X _ {0} $, it coincides with the resolvent of $ A $. For $ A _ {0} $ to be closed (i.e. for $ A = A _ {0} $) it is necessary and sufficient that

$$ \lim\limits _ {t \rightarrow 0 } \frac{1}{t} \int\limits _ { 0 } ^ { t } T ( s) x ds = x $$

for any $ x \in X _ {0} $.

The basic problem in the theory of operator semi-groups is to establish relations between properties of a semi-group and properties of its generating operator, where the latter are usually formulated in terms of $ R ( \lambda ) $.

References

[1] E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) MR0089373 Zbl 0392.46001 Zbl 0033.06501
[2] P.P. Zabreiko, A.V. Zafievskii, "On a certain class of semigroups" Soviet Math. Dokl. , 10 : 6 (1969) pp. 1523–1526 Dokl. Akad. Nauk , 189 : 5 (1969) pp. 934–937 MR264459
[3] A.V. Zafievskii, "On semigroups with singularities summable with a power-weight at zero" Soviet Math. Dokl. , 11 : 6 (1970) pp. 1408–1411 Dokl. Akad. Nauk , 195 : 1 (1970) pp. 24–27 MR278121

Comments

References

[a1] S.G. Krein, "Linear differential equations in Banach space" , Transl. Math. Monogr. , 29 , Amer. Math. Soc. (1971) (Translated from Russian) MR0342804 Zbl 0179.20701
[a2] A. Pazy, "Semigroups of linear operators and applications to partial differential equations" , Springer (1983) MR0710486 Zbl 0516.47023
How to Cite This Entry:
Generating operator of a semi-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Generating_operator_of_a_semi-group&oldid=47076
This article was adapted from an original article by S.G. Krein (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article