Difference between revisions of "Functional calculus"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | f0420301.png | ||
+ | $#A+1 = 91 n = 0 | ||
+ | $#C+1 = 91 : ~/encyclopedia/old_files/data/F042/F.0402030 Functional calculus | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A homomorphism of a certain function algebra $ A $( | |
+ | cf. [[Algebra of functions|Algebra of functions]]) into the algebra $ L ( X) $ | ||
+ | of continuous linear operators on a topological vector space $ X $. | ||
+ | A functional calculus is one of the basic tools of general spectral analysis and the theory of Banach algebras and it enables one to use function-analytic methods in these disciplines. Usually, $ A $ | ||
+ | is a topological (in particular, normed) function algebra on a certain subset $ K $ | ||
+ | of the space $ \mathbf C ^ {n} $ | ||
+ | containing the polynomials in the variables $ z ^ {1} \dots z ^ {n} $( | ||
+ | often as a dense subset), so that a functional calculus $ \phi : A \rightarrow L ( X) $ | ||
+ | is a natural extension of the polynomial calculus $ p ( z ^ {1} \dots z ^ {n} ) \rightarrow p ( T _ {1} \dots T _ {n} ) $ | ||
+ | in the commuting operators $ T _ {i} = \phi ( z ^ {i} ) $, | ||
+ | $ 1 \leq i \leq n $; | ||
+ | in this case one says that the collection $ T = ( T _ {1} \dots T _ {n} ) $ | ||
+ | admits an $ A $- | ||
+ | calculus and one writes $ \phi ( T) = f ( T) = f ( T _ {1} \dots T _ {n} ) $. | ||
+ | An $ A $- | ||
+ | calculus for $ T $ | ||
+ | is a kind of spectral theorem, since the correspondence $ a \rightarrow \langle \phi ( a) x, x ^ \prime \rangle $, | ||
+ | where $ x \in X $, | ||
+ | $ x ^ \prime \in X ^ {*} $ | ||
+ | and $ \langle , \rangle $ | ||
+ | is the duality between $ X $ | ||
+ | and $ X ^ {*} $, | ||
+ | determines a weak operator-valued $ A $- | ||
+ | distribution which commutes with $ T $. | ||
− | The functional calculus of | + | The classical functional calculus of von Neumann–Murray–Dunford ( $ A = C ( K) $, |
+ | $ X $ | ||
+ | is a reflexive space) leads to the operator (projection) [[Spectral measure|spectral measure]] | ||
− | + | $$ | |
+ | \epsilon = \epsilon _ {T} : \ | ||
+ | f ( T _ {1} \dots T _ {n} ) = \int\limits f d \epsilon . | ||
+ | $$ | ||
− | + | The functional calculus of Riesz–Dunford ( $ n = 1 $, | |
+ | $ A = \mathop{\rm Hol} ( \sigma ( T)) $, | ||
+ | that is, all functions holomorphic on the spectrum $ \sigma ( T) $ | ||
+ | of the operator $ T $) | ||
+ | leads to the formula | ||
− | + | $$ | |
+ | f ( T) = \ | ||
+ | { | ||
+ | \frac{1}{2 \pi i } | ||
+ | } | ||
+ | \int\limits _ \gamma | ||
+ | f ( \lambda ) R ( \lambda , T) d \lambda , | ||
+ | $$ | ||
− | + | where $ R ( \lambda , T) = ( \lambda I - T) ^ {-} 1 $ | |
+ | is the [[Resolvent|resolvent]] of $ T $ | ||
+ | and $ \gamma $ | ||
+ | is a contour enclosing $ \sigma ( T) $ | ||
+ | inside and on which the function $ f $ | ||
+ | is regular. Formulas of the latter type with several variables (operators) depend on the notation for a linear functional on $ \mathop{\rm Hol} ( \sigma ( T)) $ | ||
+ | and on the way the joint spectrum $ \sigma ( T) $ | ||
+ | of the collection $ T = ( T _ {1} \dots T _ {n} ) $ | ||
+ | is defined (the size of the functional calculus also depends on the definition of $ \sigma ( T) $). | ||
− | + | If $ T $ | |
+ | is a [[Spectral operator|spectral operator]], if $ S $ | ||
+ | and $ N $ | ||
+ | are its scalar and quasi-nilpotent parts, respectively, and if $ f \in \mathop{\rm Hol} ( \sigma ( T)) $, | ||
+ | then the formula | ||
− | + | $$ | |
+ | f ( T) = \ | ||
+ | \sum _ {n \geq 0 } | ||
− | + | \frac{N ^ {n} }{n! } | |
− | + | \int\limits _ {\sigma ( T) } | |
+ | f ^ { ( n) } d \epsilon , | ||
+ | $$ | ||
− | + | where $ \epsilon $ | |
+ | is a [[Resolution of the identity|resolution of the identity]] for $ T $, | ||
+ | enables one to extend the Riesz–Dunford functional calculus for $ T $ | ||
+ | to a wider class of functions. In particular, if $ N ^ {m + 1 } = 0 $, | ||
+ | then $ T $ | ||
+ | admits a functional calculus on the class $ C ^ {m} ( \sigma ( T)) $ | ||
+ | of $ m $- | ||
+ | times continuously-differentiable functions. If $ T $ | ||
+ | is an operator of scalar type, then one can substitute bounded Borel functions on $ \sigma ( T) $ | ||
+ | in this formula. In particular, the normal operators on a Hilbert space admit such a functional calculus. The converse is true: If an operator $ T $ | ||
+ | admits such a functional calculus (for operators in reflexive spaces it is sufficient to assume the existence of a functional calculus on the class of continuous functions), then $ T $ | ||
+ | is a spectral operator of scalar type (in a Hilbert space this is a linear operator that is similar to a normal operator). | ||
+ | |||
+ | In [[#References|[5]]] the non-analytic $ C \{ M _ {k} \} $- | ||
+ | calculus was constructed for operators with a resolvent of sufficiently slow growth near the spectrum; this was based on the Carleman classes $ C ( \{ M _ {k} \} , \sigma ( T)) $( | ||
+ | cf. [[Quasi-analytic class|Quasi-analytic class]]) and used the formula | ||
+ | |||
+ | $$ | ||
+ | f ( T) = - { | ||
+ | \frac{1} \pi | ||
+ | } | ||
+ | {\int\limits \int\limits } _ {\mathbf C } | ||
+ | |||
+ | \frac{\partial \widetilde{f} }{\partial \overline{z}\; } | ||
+ | |||
+ | ( \lambda ) R ( \lambda , T) d \lambda \overline{ {d \lambda }}\; , | ||
+ | $$ | ||
+ | |||
+ | where $ \widetilde{f} $ | ||
+ | is the so-called $ \overline \partial \; $- | ||
+ | extension of the function $ f $ | ||
+ | across the boundary of the spectrum $ \sigma ( T) $, | ||
+ | that is, a $ C ^ {1} $- | ||
+ | function with compact support in $ \mathbf C $ | ||
+ | for which | ||
+ | |||
+ | $$ | ||
+ | \left . f = \widetilde{f} \right | _ {\sigma ( T) } ,\ \ | ||
+ | \left | | ||
+ | |||
+ | \frac{\partial \widetilde{f} }{\partial \overline{z}\; } | ||
+ | |||
+ | ( \lambda ) \right | \leq \ | ||
+ | \textrm{ const } \cdot | ||
+ | h _ {\{ M _ {k} \} } ( c \mathop{\rm dist} ( \lambda , K)). | ||
+ | $$ | ||
Here | Here | ||
− | + | $$ | |
− | + | \frac{\partial \widetilde{f} }{\partial \overline{z}\; } | |
+ | = \ | ||
+ | { | ||
+ | \frac{1}{2} | ||
+ | } | ||
+ | \left ( | ||
− | + | \frac{\partial \widetilde{f} }{\partial x } | |
+ | + i | ||
− | + | \frac{\partial \widetilde{f} }{\partial y } | |
− | + | \right ) , | |
+ | $$ | ||
− | + | $$ | |
+ | h _ {\{ M _ {k} \} } ( r) = \inf _ { n } r ^ {n - 1 } | ||
+ | \frac{M _ {n} }{n ! } | ||
+ | , | ||
+ | $$ | ||
− | + | and the operator $ T $ | |
+ | satisfies | ||
− | + | $$ | |
+ | \| R ( \lambda , T) \| \leq \ | ||
+ | \left ( | ||
+ | \frac{h _ {\{ M _ {k} \} } ( \mathop{\rm dist} ( \lambda , K) ) }{| \mathop{\rm log} \mathop{\rm dist} ( \lambda , K) | } | ||
− | + | \right ) . | |
+ | $$ | ||
+ | |||
+ | On the other hand, bounds on the operator polynomials $ p ( T) $ | ||
+ | lead to more extensive calculi (than $ \mathop{\rm Hol} ( \sigma ( T)) $). | ||
+ | For example, if $ X $ | ||
+ | is a Hilbert space, then the von Neumann–Heinz inequality | ||
+ | |||
+ | $$ | ||
+ | \| p ( T) \| \leq \ | ||
+ | \max \{ {| p ( \xi ) | } : {| \xi | \leq \| T \| } \} | ||
+ | $$ | ||
+ | |||
+ | leads to the Szökefalvi-Nagy–Foias functional calculus ( $ A $ | ||
+ | is the algebra of all holomorphic and bounded functions in the disc $ \{ {\xi \in \mathbf C } : {| \xi | < 1 } \} $, | ||
+ | $ T $ | ||
+ | is a contraction without unitary parts), which has many applications in the theory of functional models for contraction operators. The analogue of the von Neumann–Heinz inequality for symmetric function spaces provides a functional calculus in terms of multipliers (of corresponding convolution spaces [[#References|[8]]]). | ||
+ | |||
+ | Applications. The type of a functional calculus admitting an operator $ T $ | ||
+ | is invariant under a linear similarity $ T \rightarrow V ^ {-} 1 TV $ | ||
+ | and can be used successfully to classify operators. In particular, there is an extensive theory of the so-called $ A $- | ||
+ | scalar operators, which can be applied to many classes of operators and is not confined to classical spectral theory. For a successful use of a functional calculus it is expedient to have the so-called spectral-mapping theorems: | ||
+ | |||
+ | $$ | ||
+ | \sigma ( f ( T)) = \ | ||
+ | f ( \sigma ( T)),\ \ | ||
+ | f \in A. | ||
+ | $$ | ||
Such theorems have been proved for all the functional calculi listed above (after giving a suitable meaning to the right-hand side of the formula). | Such theorems have been proved for all the functional calculi listed above (after giving a suitable meaning to the right-hand side of the formula). | ||
− | If the algebra | + | If the algebra $ A $ |
+ | contains a fine partition of unity (for example, if $ A = C ^ \infty $), | ||
+ | then one can construct a local spectral analysis from an $ A $- | ||
+ | functional calculus and, in particular, one can prove the existence of non-trivial invariant subspaces of the operator $ T $( | ||
+ | if $ \sigma ( T) $ | ||
+ | contains more than one point); an example is an operator $ T $( | ||
+ | in a Banach space) with a spectrum that lies on a smooth curve $ \gamma $ | ||
+ | and $ \int _ {0} ^ \infty \mathop{\rm log} ^ {+} \mathop{\rm log} ^ {+} \delta ( r) dr < \infty $, | ||
+ | where $ \delta ( r) = \max \{ {\| R ( \lambda , T) \| } : { \mathop{\rm dist} ( \lambda , \gamma ) \geq r } \} $. | ||
+ | A corollary of the local analysis is Shilov's theorem on idempotents [[#References|[2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators" , '''1–3''' , Interscience (1958–1971)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Spectral theories" , Addison-Wesley (1977) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Waelbroeck, "Etude spectrale des algèbres complètes" ''Acad. Roy. Belgique Cl. Sci.'' , '''31''' : 7 (1960)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.L. Taylor, "The analytic-functional calculus for several commuting operators" ''Acta Math.'' , '''125''' : 1–2 (1970) pp. 1–38</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.M. Dyn'kin, "An operator calculus based on the Cauchy–Green formula" ''Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst.'' , '''30''' (1972) pp. 33–39 (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> J. von Neumann, "Eine Spektraltheorie für allgemeine Operatoren eines unitären Räumes" ''Math. Nachr.'' , '''4''' (1950–1951) pp. 258–281</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> B. Szökefalvi-Nagy, Ch. Foiaş, "Harmonic analysis of operators on Hilbert space" , North-Holland (1970) (Translated from French)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V.V. Peller, "Estimates of operator polynomials in symmetric spaces. Functional calculus for absolute contraction operators" ''Math. Notes'' , '''25''' (1979) pp. 464–471 ''Mat. Zametki'' , '''25''' : 6 (1979) pp. 899–912</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> I. Colojoară, C. Foiaş, "Theory of generalized spectral operators" , Gordon & Breach (1968)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> Yu.I. Lyubich, V.I. Matsaev, "Operators with separable spectrum" ''Mat. Sb.'' , '''56''' : 2 (1962) pp. 433–468 (In Russian)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> J. Mikusiński, "Operational calculus" , Pergamon (1959) (Translated from Polish)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> V.P. Maslov, "Operational methods" , MIR (1976) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators" , '''1–3''' , Interscience (1958–1971)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Spectral theories" , Addison-Wesley (1977) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Waelbroeck, "Etude spectrale des algèbres complètes" ''Acad. Roy. Belgique Cl. Sci.'' , '''31''' : 7 (1960)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.L. Taylor, "The analytic-functional calculus for several commuting operators" ''Acta Math.'' , '''125''' : 1–2 (1970) pp. 1–38</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.M. Dyn'kin, "An operator calculus based on the Cauchy–Green formula" ''Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst.'' , '''30''' (1972) pp. 33–39 (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> J. von Neumann, "Eine Spektraltheorie für allgemeine Operatoren eines unitären Räumes" ''Math. Nachr.'' , '''4''' (1950–1951) pp. 258–281</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> B. Szökefalvi-Nagy, Ch. Foiaş, "Harmonic analysis of operators on Hilbert space" , North-Holland (1970) (Translated from French)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V.V. Peller, "Estimates of operator polynomials in symmetric spaces. Functional calculus for absolute contraction operators" ''Math. Notes'' , '''25''' (1979) pp. 464–471 ''Mat. Zametki'' , '''25''' : 6 (1979) pp. 899–912</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> I. Colojoară, C. Foiaş, "Theory of generalized spectral operators" , Gordon & Breach (1968)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> Yu.I. Lyubich, V.I. Matsaev, "Operators with separable spectrum" ''Mat. Sb.'' , '''56''' : 2 (1962) pp. 433–468 (In Russian)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> J. Mikusiński, "Operational calculus" , Pergamon (1959) (Translated from Polish)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> V.P. Maslov, "Operational methods" , MIR (1976) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 19:40, 5 June 2020
A homomorphism of a certain function algebra $ A $(
cf. Algebra of functions) into the algebra $ L ( X) $
of continuous linear operators on a topological vector space $ X $.
A functional calculus is one of the basic tools of general spectral analysis and the theory of Banach algebras and it enables one to use function-analytic methods in these disciplines. Usually, $ A $
is a topological (in particular, normed) function algebra on a certain subset $ K $
of the space $ \mathbf C ^ {n} $
containing the polynomials in the variables $ z ^ {1} \dots z ^ {n} $(
often as a dense subset), so that a functional calculus $ \phi : A \rightarrow L ( X) $
is a natural extension of the polynomial calculus $ p ( z ^ {1} \dots z ^ {n} ) \rightarrow p ( T _ {1} \dots T _ {n} ) $
in the commuting operators $ T _ {i} = \phi ( z ^ {i} ) $,
$ 1 \leq i \leq n $;
in this case one says that the collection $ T = ( T _ {1} \dots T _ {n} ) $
admits an $ A $-
calculus and one writes $ \phi ( T) = f ( T) = f ( T _ {1} \dots T _ {n} ) $.
An $ A $-
calculus for $ T $
is a kind of spectral theorem, since the correspondence $ a \rightarrow \langle \phi ( a) x, x ^ \prime \rangle $,
where $ x \in X $,
$ x ^ \prime \in X ^ {*} $
and $ \langle , \rangle $
is the duality between $ X $
and $ X ^ {*} $,
determines a weak operator-valued $ A $-
distribution which commutes with $ T $.
The classical functional calculus of von Neumann–Murray–Dunford ( $ A = C ( K) $, $ X $ is a reflexive space) leads to the operator (projection) spectral measure
$$ \epsilon = \epsilon _ {T} : \ f ( T _ {1} \dots T _ {n} ) = \int\limits f d \epsilon . $$
The functional calculus of Riesz–Dunford ( $ n = 1 $, $ A = \mathop{\rm Hol} ( \sigma ( T)) $, that is, all functions holomorphic on the spectrum $ \sigma ( T) $ of the operator $ T $) leads to the formula
$$ f ( T) = \ { \frac{1}{2 \pi i } } \int\limits _ \gamma f ( \lambda ) R ( \lambda , T) d \lambda , $$
where $ R ( \lambda , T) = ( \lambda I - T) ^ {-} 1 $ is the resolvent of $ T $ and $ \gamma $ is a contour enclosing $ \sigma ( T) $ inside and on which the function $ f $ is regular. Formulas of the latter type with several variables (operators) depend on the notation for a linear functional on $ \mathop{\rm Hol} ( \sigma ( T)) $ and on the way the joint spectrum $ \sigma ( T) $ of the collection $ T = ( T _ {1} \dots T _ {n} ) $ is defined (the size of the functional calculus also depends on the definition of $ \sigma ( T) $).
If $ T $ is a spectral operator, if $ S $ and $ N $ are its scalar and quasi-nilpotent parts, respectively, and if $ f \in \mathop{\rm Hol} ( \sigma ( T)) $, then the formula
$$ f ( T) = \ \sum _ {n \geq 0 } \frac{N ^ {n} }{n! } \int\limits _ {\sigma ( T) } f ^ { ( n) } d \epsilon , $$
where $ \epsilon $ is a resolution of the identity for $ T $, enables one to extend the Riesz–Dunford functional calculus for $ T $ to a wider class of functions. In particular, if $ N ^ {m + 1 } = 0 $, then $ T $ admits a functional calculus on the class $ C ^ {m} ( \sigma ( T)) $ of $ m $- times continuously-differentiable functions. If $ T $ is an operator of scalar type, then one can substitute bounded Borel functions on $ \sigma ( T) $ in this formula. In particular, the normal operators on a Hilbert space admit such a functional calculus. The converse is true: If an operator $ T $ admits such a functional calculus (for operators in reflexive spaces it is sufficient to assume the existence of a functional calculus on the class of continuous functions), then $ T $ is a spectral operator of scalar type (in a Hilbert space this is a linear operator that is similar to a normal operator).
In [5] the non-analytic $ C \{ M _ {k} \} $- calculus was constructed for operators with a resolvent of sufficiently slow growth near the spectrum; this was based on the Carleman classes $ C ( \{ M _ {k} \} , \sigma ( T)) $( cf. Quasi-analytic class) and used the formula
$$ f ( T) = - { \frac{1} \pi } {\int\limits \int\limits } _ {\mathbf C } \frac{\partial \widetilde{f} }{\partial \overline{z}\; } ( \lambda ) R ( \lambda , T) d \lambda \overline{ {d \lambda }}\; , $$
where $ \widetilde{f} $ is the so-called $ \overline \partial \; $- extension of the function $ f $ across the boundary of the spectrum $ \sigma ( T) $, that is, a $ C ^ {1} $- function with compact support in $ \mathbf C $ for which
$$ \left . f = \widetilde{f} \right | _ {\sigma ( T) } ,\ \ \left | \frac{\partial \widetilde{f} }{\partial \overline{z}\; } ( \lambda ) \right | \leq \ \textrm{ const } \cdot h _ {\{ M _ {k} \} } ( c \mathop{\rm dist} ( \lambda , K)). $$
Here
$$ \frac{\partial \widetilde{f} }{\partial \overline{z}\; } = \ { \frac{1}{2} } \left ( \frac{\partial \widetilde{f} }{\partial x } + i \frac{\partial \widetilde{f} }{\partial y } \right ) , $$
$$ h _ {\{ M _ {k} \} } ( r) = \inf _ { n } r ^ {n - 1 } \frac{M _ {n} }{n ! } , $$
and the operator $ T $ satisfies
$$ \| R ( \lambda , T) \| \leq \ \left ( \frac{h _ {\{ M _ {k} \} } ( \mathop{\rm dist} ( \lambda , K) ) }{| \mathop{\rm log} \mathop{\rm dist} ( \lambda , K) | } \right ) . $$
On the other hand, bounds on the operator polynomials $ p ( T) $ lead to more extensive calculi (than $ \mathop{\rm Hol} ( \sigma ( T)) $). For example, if $ X $ is a Hilbert space, then the von Neumann–Heinz inequality
$$ \| p ( T) \| \leq \ \max \{ {| p ( \xi ) | } : {| \xi | \leq \| T \| } \} $$
leads to the Szökefalvi-Nagy–Foias functional calculus ( $ A $ is the algebra of all holomorphic and bounded functions in the disc $ \{ {\xi \in \mathbf C } : {| \xi | < 1 } \} $, $ T $ is a contraction without unitary parts), which has many applications in the theory of functional models for contraction operators. The analogue of the von Neumann–Heinz inequality for symmetric function spaces provides a functional calculus in terms of multipliers (of corresponding convolution spaces [8]).
Applications. The type of a functional calculus admitting an operator $ T $ is invariant under a linear similarity $ T \rightarrow V ^ {-} 1 TV $ and can be used successfully to classify operators. In particular, there is an extensive theory of the so-called $ A $- scalar operators, which can be applied to many classes of operators and is not confined to classical spectral theory. For a successful use of a functional calculus it is expedient to have the so-called spectral-mapping theorems:
$$ \sigma ( f ( T)) = \ f ( \sigma ( T)),\ \ f \in A. $$
Such theorems have been proved for all the functional calculi listed above (after giving a suitable meaning to the right-hand side of the formula).
If the algebra $ A $ contains a fine partition of unity (for example, if $ A = C ^ \infty $), then one can construct a local spectral analysis from an $ A $- functional calculus and, in particular, one can prove the existence of non-trivial invariant subspaces of the operator $ T $( if $ \sigma ( T) $ contains more than one point); an example is an operator $ T $( in a Banach space) with a spectrum that lies on a smooth curve $ \gamma $ and $ \int _ {0} ^ \infty \mathop{\rm log} ^ {+} \mathop{\rm log} ^ {+} \delta ( r) dr < \infty $, where $ \delta ( r) = \max \{ {\| R ( \lambda , T) \| } : { \mathop{\rm dist} ( \lambda , \gamma ) \geq r } \} $. A corollary of the local analysis is Shilov's theorem on idempotents [2].
References
[1] | N. Dunford, J.T. Schwartz, "Linear operators" , 1–3 , Interscience (1958–1971) |
[2] | N. Bourbaki, "Elements of mathematics. Spectral theories" , Addison-Wesley (1977) (Translated from French) |
[3] | L. Waelbroeck, "Etude spectrale des algèbres complètes" Acad. Roy. Belgique Cl. Sci. , 31 : 7 (1960) |
[4] | J.L. Taylor, "The analytic-functional calculus for several commuting operators" Acta Math. , 125 : 1–2 (1970) pp. 1–38 |
[5] | E.M. Dyn'kin, "An operator calculus based on the Cauchy–Green formula" Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. , 30 (1972) pp. 33–39 (In Russian) |
[6] | J. von Neumann, "Eine Spektraltheorie für allgemeine Operatoren eines unitären Räumes" Math. Nachr. , 4 (1950–1951) pp. 258–281 |
[7] | B. Szökefalvi-Nagy, Ch. Foiaş, "Harmonic analysis of operators on Hilbert space" , North-Holland (1970) (Translated from French) |
[8] | V.V. Peller, "Estimates of operator polynomials in symmetric spaces. Functional calculus for absolute contraction operators" Math. Notes , 25 (1979) pp. 464–471 Mat. Zametki , 25 : 6 (1979) pp. 899–912 |
[9] | I. Colojoară, C. Foiaş, "Theory of generalized spectral operators" , Gordon & Breach (1968) |
[10] | Yu.I. Lyubich, V.I. Matsaev, "Operators with separable spectrum" Mat. Sb. , 56 : 2 (1962) pp. 433–468 (In Russian) |
[11] | J. Mikusiński, "Operational calculus" , Pergamon (1959) (Translated from Polish) |
[12] | V.P. Maslov, "Operational methods" , MIR (1976) (Translated from Russian) |
Comments
For a systematic treatment of analytic functional calculi in several variables cf. [a1].
References
[a1] | F.H. Vasilescu, "Analytic functional calculus and spectral decompositions" , Reidel & Ed. Academici (1982) |
Functional calculus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Functional_calculus&oldid=47012