Difference between revisions of "Fractional power"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | f0412701.png | ||
+ | $#A+1 = 78 n = 0 | ||
+ | $#C+1 = 78 : ~/encyclopedia/old_files/data/F041/F.0401270 Fractional power | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of a linear operator $ A $ | |
+ | on a complex Banach space $ E $'' | ||
+ | |||
+ | A function $ f ( A) $ | ||
+ | of this operator such that $ f ( z) = z ^ \alpha $. | ||
+ | If the operator $ A $ | ||
+ | is bounded and its spectrum does not contain zero and does not surround it, $ A ^ \alpha $ | ||
+ | is defined by a [[Cauchy integral|Cauchy integral]] along a contour around the spectrum of $ A $ | ||
+ | not containing zero. If $ A $ | ||
+ | is unbounded, the contour has to be taken infinite, and problems on the convergence of the integral arise. If $ A $ | ||
+ | has a domain of definition $ D ( A) $ | ||
+ | which is dense in $ E $, | ||
+ | and has for $ \lambda < 0 $ | ||
+ | a resolvent | ||
+ | |||
+ | $$ | ||
+ | R ( \lambda , A ) = ( A - \lambda I ) ^ {-} 1 | ||
+ | $$ | ||
satisfying the estimate | satisfying the estimate | ||
− | + | $$ \tag{1 } | |
+ | \| R ( - s , A ) \| \leq M ( 1 + s ) ^ {-} 1 ,\ s > 0 , | ||
+ | $$ | ||
then | then | ||
− | + | $$ | |
+ | A ^ {- \alpha } = | ||
+ | \frac{1}{2 \pi i } | ||
+ | \int\limits _ \Gamma \lambda ^ {- | ||
+ | \alpha } R ( \lambda , A ) d \lambda , | ||
+ | $$ | ||
− | where | + | where $ \Gamma $ |
+ | consists of the sides of an angle depending on $ M $. | ||
+ | The operators $ A ^ {- \alpha } $ | ||
+ | are bounded and $ A ^ {- \alpha } x \rightarrow x $ | ||
+ | for any $ x \in E $ | ||
+ | as $ \alpha \rightarrow 0 $. | ||
+ | Positive powers are defined as follows: $ A ^ \alpha = ( A ^ {- \alpha } ) ^ {-} 1 $; | ||
+ | they are unbounded. For any real $ \alpha $ | ||
+ | and $ \beta $ | ||
+ | the following fundamental property of powers holds: | ||
− | + | $$ | |
+ | A ^ \alpha A ^ \beta x = A ^ \beta A ^ \alpha x = A ^ { | ||
+ | \alpha + \beta } x | ||
+ | $$ | ||
− | for | + | for $ x \in D ( A ^ \gamma ) $ |
+ | and $ \gamma = \max \{ \alpha , \beta , \alpha + \beta \} $. | ||
+ | If $ 0 < \alpha < 1 $, | ||
+ | $ ( A ^ \alpha ) ^ \beta = A ^ {\alpha \beta } $. | ||
+ | For any $ \alpha < \beta < \gamma $ | ||
+ | and $ x \in D ( A ^ \gamma ) $, | ||
− | + | $$ | |
+ | \| A ^ \beta x \| \leq C ( \alpha , \beta , \gamma ) \| A ^ \alpha x \| ^ {( \gamma - \beta ) / ( \gamma - \alpha ) } \| A ^ \gamma x \| ^ {( \beta - \alpha ) / ( \gamma - \alpha ) } | ||
+ | $$ | ||
− | (inequality of moments). The power semi-group | + | (inequality of moments). The power semi-group $ A ^ {- \alpha } $ |
+ | permits extension to the semi-group $ A ^ {-} z $ | ||
+ | which is analytic in the right half-plane. | ||
− | The above properties are extended to include the case when | + | The above properties are extended to include the case when $ A $ |
+ | has no bounded inverse and when the estimate $ \| R ( - s , A ) \| \leq M s ^ {-} 1 $, | ||
+ | $ s > 0 $, | ||
+ | holds. If condition (1) is met and if $ 0 < \alpha < 1 $, | ||
+ | then | ||
− | + | $$ | |
+ | A ^ {- \alpha } = | ||
+ | \frac{\sin \alpha \pi } \pi | ||
+ | \int\limits _ { 0 } ^ \infty s ^ {- \alpha } R ( - s , A ) d s . | ||
+ | $$ | ||
− | If | + | If $ B $ |
+ | is the infinitesimal operator of a contraction semi-group $ U ( t) $, | ||
+ | then | ||
− | + | $$ | |
+ | ( - B ) ^ {- \alpha } = | ||
+ | \frac{1}{\Gamma ( \alpha ) } | ||
+ | \int\limits _ { 0 } ^ \infty t ^ {\alpha - 1 } U ( t) d t . | ||
+ | $$ | ||
− | It does not follow from condition (1) that | + | It does not follow from condition (1) that $ - A $ |
+ | is the infinitesimal operator of a strongly-continuous semi-group, but the operator $ - A ^ \alpha $ | ||
+ | is the infinitesimal operator of an analytic semi-group if $ \alpha \leq 1/2 $. | ||
− | An operator | + | An operator $ B $ |
+ | is dominated by an operator $ A $ | ||
+ | if $ D ( B) \supset D ( A) $ | ||
+ | and if $ \| Bx \| \leq c \| Ax \| $, | ||
+ | $ x \in D ( A) $. | ||
+ | If $ B $ | ||
+ | is dominated by $ A $ | ||
+ | and if the resolvents of both operators have the property (1), then $ B ^ \alpha $ | ||
+ | is dominated by $ A ^ \beta $ | ||
+ | if $ 0 \leq \alpha < \beta \leq 1 $. | ||
− | If | + | If $ A $ |
+ | is a positive self-adjoint operator on a Hilbert space, its fractional power is defined by the spectral decomposition (cf. [[Spectral decomposition of a linear operator|Spectral decomposition of a linear operator]]): | ||
− | + | $$ | |
+ | A ^ \alpha = \int\limits _ { 0 } ^ \infty \lambda ^ \alpha d E _ \lambda . | ||
+ | $$ | ||
− | In the inequality of moments, | + | In the inequality of moments, $ c ( \alpha , \beta , \gamma ) = 1 $ |
+ | for such an operator. Let $ A $ | ||
+ | and $ B $ | ||
+ | be two positive self-adjoint operators, acting on Hilbert spaces $ H $ | ||
+ | and $ H _ {1} $, | ||
+ | respectively. If $ T $ | ||
+ | is a bounded linear operator from $ H $ | ||
+ | to $ H _ {1} $ | ||
+ | with norm $ M $ | ||
+ | such that $ T D ( A) \subset D ( B) $ | ||
+ | and $ \| B T x \| \leq M _ {1} \| A x \| $, | ||
+ | $ x \in D ( A) $, | ||
+ | then $ T D ( A ^ \alpha ) \subset D ( B ^ \alpha ) $ | ||
+ | and | ||
− | + | $$ | |
+ | \| B ^ \alpha T x \| \leq M ^ {1 - \alpha } M _ {1} ^ \alpha | ||
+ | \| A ^ \alpha x \| ,\ 0 \leq \alpha \leq 1 | ||
+ | $$ | ||
− | (Heinz's inequality). In particular, if | + | (Heinz's inequality). In particular, if $ H = H _ {1} $ |
+ | and $ T = I $, | ||
+ | the fact that $ B $ | ||
+ | is dominated by $ A $ | ||
+ | implies that $ B ^ \alpha $ | ||
+ | is dominated by $ A ^ \alpha $ | ||
+ | if $ 0 \leq \alpha \leq 1 $. | ||
+ | Fractional powers of operators are employed in the study of non-linear equations. They have been studied in detail for operators generated by elliptic boundary value problems. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.G. Krein (ed.) , ''Functional analysis'' , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.T. Seeley, "Complex powers of elliptic operators" , ''Proc. Symp. Pure Math.'' , '''10''' , Amer. Math. Soc. (1967) pp. 288–307</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.G. Krein (ed.) , ''Functional analysis'' , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.T. Seeley, "Complex powers of elliptic operators" , ''Proc. Symp. Pure Math.'' , '''10''' , Amer. Math. Soc. (1967) pp. 288–307</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)</TD></TR></table> |
Latest revision as of 19:39, 5 June 2020
of a linear operator $ A $
on a complex Banach space $ E $
A function $ f ( A) $ of this operator such that $ f ( z) = z ^ \alpha $. If the operator $ A $ is bounded and its spectrum does not contain zero and does not surround it, $ A ^ \alpha $ is defined by a Cauchy integral along a contour around the spectrum of $ A $ not containing zero. If $ A $ is unbounded, the contour has to be taken infinite, and problems on the convergence of the integral arise. If $ A $ has a domain of definition $ D ( A) $ which is dense in $ E $, and has for $ \lambda < 0 $ a resolvent
$$ R ( \lambda , A ) = ( A - \lambda I ) ^ {-} 1 $$
satisfying the estimate
$$ \tag{1 } \| R ( - s , A ) \| \leq M ( 1 + s ) ^ {-} 1 ,\ s > 0 , $$
then
$$ A ^ {- \alpha } = \frac{1}{2 \pi i } \int\limits _ \Gamma \lambda ^ {- \alpha } R ( \lambda , A ) d \lambda , $$
where $ \Gamma $ consists of the sides of an angle depending on $ M $. The operators $ A ^ {- \alpha } $ are bounded and $ A ^ {- \alpha } x \rightarrow x $ for any $ x \in E $ as $ \alpha \rightarrow 0 $. Positive powers are defined as follows: $ A ^ \alpha = ( A ^ {- \alpha } ) ^ {-} 1 $; they are unbounded. For any real $ \alpha $ and $ \beta $ the following fundamental property of powers holds:
$$ A ^ \alpha A ^ \beta x = A ^ \beta A ^ \alpha x = A ^ { \alpha + \beta } x $$
for $ x \in D ( A ^ \gamma ) $ and $ \gamma = \max \{ \alpha , \beta , \alpha + \beta \} $. If $ 0 < \alpha < 1 $, $ ( A ^ \alpha ) ^ \beta = A ^ {\alpha \beta } $. For any $ \alpha < \beta < \gamma $ and $ x \in D ( A ^ \gamma ) $,
$$ \| A ^ \beta x \| \leq C ( \alpha , \beta , \gamma ) \| A ^ \alpha x \| ^ {( \gamma - \beta ) / ( \gamma - \alpha ) } \| A ^ \gamma x \| ^ {( \beta - \alpha ) / ( \gamma - \alpha ) } $$
(inequality of moments). The power semi-group $ A ^ {- \alpha } $ permits extension to the semi-group $ A ^ {-} z $ which is analytic in the right half-plane.
The above properties are extended to include the case when $ A $ has no bounded inverse and when the estimate $ \| R ( - s , A ) \| \leq M s ^ {-} 1 $, $ s > 0 $, holds. If condition (1) is met and if $ 0 < \alpha < 1 $, then
$$ A ^ {- \alpha } = \frac{\sin \alpha \pi } \pi \int\limits _ { 0 } ^ \infty s ^ {- \alpha } R ( - s , A ) d s . $$
If $ B $ is the infinitesimal operator of a contraction semi-group $ U ( t) $, then
$$ ( - B ) ^ {- \alpha } = \frac{1}{\Gamma ( \alpha ) } \int\limits _ { 0 } ^ \infty t ^ {\alpha - 1 } U ( t) d t . $$
It does not follow from condition (1) that $ - A $ is the infinitesimal operator of a strongly-continuous semi-group, but the operator $ - A ^ \alpha $ is the infinitesimal operator of an analytic semi-group if $ \alpha \leq 1/2 $.
An operator $ B $ is dominated by an operator $ A $ if $ D ( B) \supset D ( A) $ and if $ \| Bx \| \leq c \| Ax \| $, $ x \in D ( A) $. If $ B $ is dominated by $ A $ and if the resolvents of both operators have the property (1), then $ B ^ \alpha $ is dominated by $ A ^ \beta $ if $ 0 \leq \alpha < \beta \leq 1 $.
If $ A $ is a positive self-adjoint operator on a Hilbert space, its fractional power is defined by the spectral decomposition (cf. Spectral decomposition of a linear operator):
$$ A ^ \alpha = \int\limits _ { 0 } ^ \infty \lambda ^ \alpha d E _ \lambda . $$
In the inequality of moments, $ c ( \alpha , \beta , \gamma ) = 1 $ for such an operator. Let $ A $ and $ B $ be two positive self-adjoint operators, acting on Hilbert spaces $ H $ and $ H _ {1} $, respectively. If $ T $ is a bounded linear operator from $ H $ to $ H _ {1} $ with norm $ M $ such that $ T D ( A) \subset D ( B) $ and $ \| B T x \| \leq M _ {1} \| A x \| $, $ x \in D ( A) $, then $ T D ( A ^ \alpha ) \subset D ( B ^ \alpha ) $ and
$$ \| B ^ \alpha T x \| \leq M ^ {1 - \alpha } M _ {1} ^ \alpha \| A ^ \alpha x \| ,\ 0 \leq \alpha \leq 1 $$
(Heinz's inequality). In particular, if $ H = H _ {1} $ and $ T = I $, the fact that $ B $ is dominated by $ A $ implies that $ B ^ \alpha $ is dominated by $ A ^ \alpha $ if $ 0 \leq \alpha \leq 1 $. Fractional powers of operators are employed in the study of non-linear equations. They have been studied in detail for operators generated by elliptic boundary value problems.
References
[1] | S.G. Krein (ed.) , Functional analysis , Wolters-Noordhoff (1972) (Translated from Russian) |
[2] | S.G. Krein, "Linear differential equations in Banach space" , Transl. Math. Monogr. , 29 , Amer. Math. Soc. (1971) (Translated from Russian) |
[3] | R.T. Seeley, "Complex powers of elliptic operators" , Proc. Symp. Pure Math. , 10 , Amer. Math. Soc. (1967) pp. 288–307 |
Comments
References
[a1] | E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) |
Fractional power. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fractional_power&oldid=46970