|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | f0412401.png |
| + | $#A+1 = 38 n = 0 |
| + | $#C+1 = 38 : ~/encyclopedia/old_files/data/F041/F.0401240 Fractional\AAhlinear function |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| A function of the type | | A function of the type |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412401.png" /></td> </tr></table>
| + | $$ |
| + | w = L ( z) = |
| + | \frac{a _ {1} z _ {1} + \dots + a _ {n} z _ {n} + b }{c _ {1} z _ {1} + \dots + c _ {n} z _ {n} + d } |
| + | , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412402.png" /> are complex or real variables, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412403.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412406.png" /> are complex or real coefficients, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412407.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412408.png" />, the fractional-linear function is an integral-linear function; if the rank of the matrix | + | where $ z = ( z _ {1} \dots z _ {n} ) $ |
| + | are complex or real variables, $ a _ {j} $, |
| + | $ b $, |
| + | $ c _ {j} $, |
| + | $ d $ |
| + | are complex or real coefficients, and $ | c _ {1} | + \dots + | c _ {n} | + | d | > 0 $. |
| + | If $ | c _ {1} | = \dots = | c _ {n} | = 0 $, |
| + | the fractional-linear function is an integral-linear function; if the rank of the matrix |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412409.png" /></td> </tr></table>
| + | $$ |
| + | A = \left \| |
| + | \begin{array}{cccc} |
| + | a _ {1} &\dots &a _ {n} & b \\ |
| + | c _ {1} &\dots &c _ {n} & d \\ |
| + | \end{array} |
| + | \right \| |
| + | $$ |
| | | |
− | is equal to one, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124010.png" /> is a constant. A proper fractional-linear function is obtained if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124011.png" /> and if the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124012.png" /> is two; it assumed in what follows that these conditions have been met. | + | is equal to one, $ L ( z) $ |
| + | is a constant. A proper fractional-linear function is obtained if $ | c _ {1} | + \dots + | c _ {n} | > 0 $ |
| + | and if the rank of $ A $ |
| + | is two; it assumed in what follows that these conditions have been met. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124016.png" /> are real, the graph of the fractional-linear function is an equilateral hyperbola with the asymptotes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124018.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124027.png" /> are real, the graph of the fractional-linear function is hyperbolic paraboloid. | + | If $ n = 1 $ |
| + | and $ a _ {1} = a $, |
| + | $ c _ {1} = c $, |
| + | $ z _ {1} = z $ |
| + | are real, the graph of the fractional-linear function is an equilateral hyperbola with the asymptotes $ z = - d / c $ |
| + | and $ w = a / c $. |
| + | If $ n = 2 $ |
| + | and $ a _ {1} $, |
| + | $ a _ {2} $, |
| + | $ b $, |
| + | $ c _ {1} $, |
| + | $ c _ {2} $, |
| + | $ d $, |
| + | $ z _ {1} $, |
| + | $ z _ {2} $ |
| + | are real, the graph of the fractional-linear function is hyperbolic paraboloid. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124028.png" />, the fractional-linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124029.png" /> is an analytic function of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124030.png" /> everywhere in the extended complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124031.png" />, except at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124032.png" /> at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124033.png" /> has a simple pole. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124034.png" />, the fractional-linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124035.png" /> is a meromorphic function in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124036.png" /> of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124037.png" />, with the set | + | If $ n = 1 $, |
| + | the fractional-linear function $ L ( z) $ |
| + | is an analytic function of the complex variable $ z $ |
| + | everywhere in the extended complex plane $ \overline{\mathbf C}\; $, |
| + | except at the point $ z = - d / c $ |
| + | at which $ L ( z) $ |
| + | has a simple pole. If $ n \geq 1 $, |
| + | the fractional-linear function $ L ( z) $ |
| + | is a meromorphic function in the space $ \mathbf C ^ {n} $ |
| + | of the complex variable $ z = ( z _ {1} \dots z _ {n} ) $, |
| + | with the set |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124038.png" /></td> </tr></table>
| + | $$ |
| + | \{ {z \in \mathbf C ^ {n} } : {c _ {1} z _ {1} + \dots + c _ {n} z _ {n} + |
| + | d = 0 } \} |
| + | $$ |
| | | |
| as its polar set. | | as its polar set. |
| | | |
| See also [[Fractional-linear mapping|Fractional-linear mapping]]. | | See also [[Fractional-linear mapping|Fractional-linear mapping]]. |
A function of the type
$$
w = L ( z) =
\frac{a _ {1} z _ {1} + \dots + a _ {n} z _ {n} + b }{c _ {1} z _ {1} + \dots + c _ {n} z _ {n} + d }
,
$$
where $ z = ( z _ {1} \dots z _ {n} ) $
are complex or real variables, $ a _ {j} $,
$ b $,
$ c _ {j} $,
$ d $
are complex or real coefficients, and $ | c _ {1} | + \dots + | c _ {n} | + | d | > 0 $.
If $ | c _ {1} | = \dots = | c _ {n} | = 0 $,
the fractional-linear function is an integral-linear function; if the rank of the matrix
$$
A = \left \|
\begin{array}{cccc}
a _ {1} &\dots &a _ {n} & b \\
c _ {1} &\dots &c _ {n} & d \\
\end{array}
\right \|
$$
is equal to one, $ L ( z) $
is a constant. A proper fractional-linear function is obtained if $ | c _ {1} | + \dots + | c _ {n} | > 0 $
and if the rank of $ A $
is two; it assumed in what follows that these conditions have been met.
If $ n = 1 $
and $ a _ {1} = a $,
$ c _ {1} = c $,
$ z _ {1} = z $
are real, the graph of the fractional-linear function is an equilateral hyperbola with the asymptotes $ z = - d / c $
and $ w = a / c $.
If $ n = 2 $
and $ a _ {1} $,
$ a _ {2} $,
$ b $,
$ c _ {1} $,
$ c _ {2} $,
$ d $,
$ z _ {1} $,
$ z _ {2} $
are real, the graph of the fractional-linear function is hyperbolic paraboloid.
If $ n = 1 $,
the fractional-linear function $ L ( z) $
is an analytic function of the complex variable $ z $
everywhere in the extended complex plane $ \overline{\mathbf C}\; $,
except at the point $ z = - d / c $
at which $ L ( z) $
has a simple pole. If $ n \geq 1 $,
the fractional-linear function $ L ( z) $
is a meromorphic function in the space $ \mathbf C ^ {n} $
of the complex variable $ z = ( z _ {1} \dots z _ {n} ) $,
with the set
$$
\{ {z \in \mathbf C ^ {n} } : {c _ {1} z _ {1} + \dots + c _ {n} z _ {n} +
d = 0 } \}
$$
as its polar set.
See also Fractional-linear mapping.