Namespaces
Variants
Actions

Difference between revisions of "Fourier-Bessel series"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
Line 1: Line 1:
The expansion of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410001.png" /> in a series
+
<!--
 +
f0410001.png
 +
$#A+1 = 17 n = 0
 +
$#C+1 = 17 : ~/encyclopedia/old_files/data/F041/F.0401000 Fourier\ANDBessel series
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410002.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410003.png" /> is a function given on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410004.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410005.png" /> is the Bessel function of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410006.png" /> (cf. [[Bessel functions|Bessel functions]]), and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410007.png" /> are the positive zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410008.png" /> taken in increasing order; the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f0410009.png" /> have the following values:
+
The expansion of a function f $
 +
in a series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f04100010.png" /></td> </tr></table>
+
$$ \tag{* }
 +
f ( x)  = \
 +
\sum _ {m = 1 } ^  \infty 
 +
c _ {m} J _  \nu  \left ( x _ {m} ^ {( \nu ) }
 +
\cdot {
 +
\frac{x}{a}
 +
} \right ) ,\ \
 +
0 < x < a,
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f04100011.png" /> is a piecewise-continuous function given on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f04100012.png" /> and if the integral
+
where  $  f $
 +
is a function given on the interval $  ( 0, a) $,
 +
$  J _  \nu  $
 +
is the Bessel function of order  $  \nu > - 1/2 $(
 +
cf. [[Bessel functions|Bessel functions]]), and the $  x _ {m} ^ {( \nu ) } $
 +
are the positive zeros of  $  J _  \nu  $
 +
taken in increasing order; the coefficients  $  c _ {m} $
 +
have the following values:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f04100013.png" /></td> </tr></table>
+
$$
 +
c _ {m}  = \
 +
{
 +
\frac{2}{a  ^ {2} J _ {\nu + 1 }  ^ {2}
 +
( x _ {m} ^ {( \nu ) } ) }
 +
}
 +
\int\limits _ { 0 } ^ { a }
 +
rf ( r) J _  \nu  \left ( x _ {m} ^ {( \nu ) }
 +
\cdot {
 +
\frac{r}{a}
 +
} \right )  dr.
 +
$$
  
then the Fourier–Bessel series converges and its sum is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f04100014.png" /> at each interior point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f04100015.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f04100016.png" /> at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041000/f04100017.png" /> locally has bounded variation.
+
If  $  f $
 +
is a piecewise-continuous function given on an interval  $  ( 0, a) $
 +
and if the integral
 +
 
 +
$$
 +
\int\limits _ { 0 } ^ { a }
 +
\sqrt r  | f ( r) |  dr  <  \infty ,
 +
$$
 +
 
 +
then the Fourier–Bessel series converges and its sum is equal to $  [ f ( x + ) + f ( x - )]/2 $
 +
at each interior point $  x $
 +
of $  ( 0, a) $
 +
at which f $
 +
locally has bounded variation.

Latest revision as of 19:39, 5 June 2020


The expansion of a function $ f $ in a series

$$ \tag{* } f ( x) = \ \sum _ {m = 1 } ^ \infty c _ {m} J _ \nu \left ( x _ {m} ^ {( \nu ) } \cdot { \frac{x}{a} } \right ) ,\ \ 0 < x < a, $$

where $ f $ is a function given on the interval $ ( 0, a) $, $ J _ \nu $ is the Bessel function of order $ \nu > - 1/2 $( cf. Bessel functions), and the $ x _ {m} ^ {( \nu ) } $ are the positive zeros of $ J _ \nu $ taken in increasing order; the coefficients $ c _ {m} $ have the following values:

$$ c _ {m} = \ { \frac{2}{a ^ {2} J _ {\nu + 1 } ^ {2} ( x _ {m} ^ {( \nu ) } ) } } \int\limits _ { 0 } ^ { a } rf ( r) J _ \nu \left ( x _ {m} ^ {( \nu ) } \cdot { \frac{r}{a} } \right ) dr. $$

If $ f $ is a piecewise-continuous function given on an interval $ ( 0, a) $ and if the integral

$$ \int\limits _ { 0 } ^ { a } \sqrt r | f ( r) | dr < \infty , $$

then the Fourier–Bessel series converges and its sum is equal to $ [ f ( x + ) + f ( x - )]/2 $ at each interior point $ x $ of $ ( 0, a) $ at which $ f $ locally has bounded variation.

How to Cite This Entry:
Fourier-Bessel series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier-Bessel_series&oldid=46960
This article was adapted from an original article by L.N. Karmazina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article