Difference between revisions of "Fourier-Bessel series"
Ulf Rehmann (talk | contribs) m (moved Fourier–Bessel series to Fourier-Bessel series: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | f0410001.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/F041/F.0401000 Fourier\ANDBessel series | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The expansion of a function $ f $ | |
+ | in a series | ||
− | + | $$ \tag{* } | |
+ | f ( x) = \ | ||
+ | \sum _ {m = 1 } ^ \infty | ||
+ | c _ {m} J _ \nu \left ( x _ {m} ^ {( \nu ) } | ||
+ | \cdot { | ||
+ | \frac{x}{a} | ||
+ | } \right ) ,\ \ | ||
+ | 0 < x < a, | ||
+ | $$ | ||
− | + | where $ f $ | |
+ | is a function given on the interval $ ( 0, a) $, | ||
+ | $ J _ \nu $ | ||
+ | is the Bessel function of order $ \nu > - 1/2 $( | ||
+ | cf. [[Bessel functions|Bessel functions]]), and the $ x _ {m} ^ {( \nu ) } $ | ||
+ | are the positive zeros of $ J _ \nu $ | ||
+ | taken in increasing order; the coefficients $ c _ {m} $ | ||
+ | have the following values: | ||
− | + | $$ | |
+ | c _ {m} = \ | ||
+ | { | ||
+ | \frac{2}{a ^ {2} J _ {\nu + 1 } ^ {2} | ||
+ | ( x _ {m} ^ {( \nu ) } ) } | ||
+ | } | ||
+ | \int\limits _ { 0 } ^ { a } | ||
+ | rf ( r) J _ \nu \left ( x _ {m} ^ {( \nu ) } | ||
+ | \cdot { | ||
+ | \frac{r}{a} | ||
+ | } \right ) dr. | ||
+ | $$ | ||
− | then the Fourier–Bessel series converges and its sum is equal to | + | If $ f $ |
+ | is a piecewise-continuous function given on an interval $ ( 0, a) $ | ||
+ | and if the integral | ||
+ | |||
+ | $$ | ||
+ | \int\limits _ { 0 } ^ { a } | ||
+ | \sqrt r | f ( r) | dr < \infty , | ||
+ | $$ | ||
+ | |||
+ | then the Fourier–Bessel series converges and its sum is equal to $ [ f ( x + ) + f ( x - )]/2 $ | ||
+ | at each interior point $ x $ | ||
+ | of $ ( 0, a) $ | ||
+ | at which $ f $ | ||
+ | locally has bounded variation. |
Latest revision as of 19:39, 5 June 2020
The expansion of a function $ f $
in a series
$$ \tag{* } f ( x) = \ \sum _ {m = 1 } ^ \infty c _ {m} J _ \nu \left ( x _ {m} ^ {( \nu ) } \cdot { \frac{x}{a} } \right ) ,\ \ 0 < x < a, $$
where $ f $ is a function given on the interval $ ( 0, a) $, $ J _ \nu $ is the Bessel function of order $ \nu > - 1/2 $( cf. Bessel functions), and the $ x _ {m} ^ {( \nu ) } $ are the positive zeros of $ J _ \nu $ taken in increasing order; the coefficients $ c _ {m} $ have the following values:
$$ c _ {m} = \ { \frac{2}{a ^ {2} J _ {\nu + 1 } ^ {2} ( x _ {m} ^ {( \nu ) } ) } } \int\limits _ { 0 } ^ { a } rf ( r) J _ \nu \left ( x _ {m} ^ {( \nu ) } \cdot { \frac{r}{a} } \right ) dr. $$
If $ f $ is a piecewise-continuous function given on an interval $ ( 0, a) $ and if the integral
$$ \int\limits _ { 0 } ^ { a } \sqrt r | f ( r) | dr < \infty , $$
then the Fourier–Bessel series converges and its sum is equal to $ [ f ( x + ) + f ( x - )]/2 $ at each interior point $ x $ of $ ( 0, a) $ at which $ f $ locally has bounded variation.
Fourier-Bessel series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier-Bessel_series&oldid=46960