Namespaces
Variants
Actions

Difference between revisions of "Fold"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
f0407301.png
 +
$#A+1 = 25 n = 0
 +
$#C+1 = 25 : ~/encyclopedia/old_files/data/F040/F.0400730 Fold
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A type of singularity of differentiable mappings (cf. [[Singularities of differentiable mappings|Singularities of differentiable mappings]]).
 
A type of singularity of differentiable mappings (cf. [[Singularities of differentiable mappings|Singularities of differentiable mappings]]).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f0407301.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f0407302.png" />-function. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f0407303.png" /> is said to be a fold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f0407304.png" /> if
+
Let $  f : \mathbf R  ^ {n} \rightarrow \mathbf R  ^ {n} $
 +
be a $  C  ^  \infty  $-
 +
function. Then $  x _ {0} \in \mathbf R  ^ {n} $
 +
is said to be a fold of f $
 +
if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f0407305.png" /></td> </tr></table>
+
$$
 +
{ \mathop{\rm dim}  \mathop{\rm Ker} }  f ^ { \prime } ( x _ {0} )  = \
 +
{ \mathop{\rm dim}  \mathop{\rm Coker} }  f ^ { \prime } ( x _ {0} )  = 1
 +
$$
  
and if the Hessian of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f0407306.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f0407307.png" /> is not equal to zero (cf. [[Hessian of a function|Hessian of a function]]). This definition can be generalized to the case of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f0407308.png" />-mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f0407309.png" /> between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073010.png" />-manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073012.png" /> (necessarily of the same dimension), cf. [[#References|[a1]]].
+
and if the Hessian of f $
 +
at $  x _ {0} $
 +
is not equal to zero (cf. [[Hessian of a function|Hessian of a function]]). This definition can be generalized to the case of a $  C  ^  \infty  $-
 +
mapping $  f : X \rightarrow Y $
 +
between $  C  ^  \infty  $-
 +
manifolds $  X $
 +
and $  Y $(
 +
necessarily of the same dimension), cf. [[#References|[a1]]].
  
The name derives from the following fact: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073013.png" /> (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073016.png" /> as above) has a fold at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073017.png" />, then there are local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073018.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073019.png" /> vanishing at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073020.png" /> and local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073021.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073022.png" /> vanishing at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073023.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073024.png" /> has the local representation
+
The name derives from the following fact: If $  f : X \rightarrow Y $(
 +
with $  X $,  
 +
$  Y $
 +
and f $
 +
as above) has a fold at $  x _ {0} \in X $,  
 +
then there are local coordinates $  ( x _ {1} \dots x _ {n} ) $
 +
in $  X $
 +
vanishing at $  x _ {0} $
 +
and local coordinates $  ( y _ {1} \dots y _ {n} ) $
 +
in $  Y $
 +
vanishing at $  f ( x _ {0} ) $
 +
such that f $
 +
has the local representation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040730/f04073025.png" /></td> </tr></table>
+
$$
 +
f ( x _ {1} \dots x _ {n} )  = \
 +
( x _ {1} \dots x _ {n-} 1 , x _ {n}  ^ {2} ) .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''3''' , Springer (1985) {{MR|1540773}} {{MR|0781537}} {{MR|0781536}} {{ZBL|0612.35001}} {{ZBL|0601.35001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian) {{MR|777682}} {{ZBL|0554.58001}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''3''' , Springer (1985) {{MR|1540773}} {{MR|0781537}} {{MR|0781536}} {{ZBL|0612.35001}} {{ZBL|0601.35001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian) {{MR|777682}} {{ZBL|0554.58001}} </TD></TR></table>

Latest revision as of 19:39, 5 June 2020


A type of singularity of differentiable mappings (cf. Singularities of differentiable mappings).

Let $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $ be a $ C ^ \infty $- function. Then $ x _ {0} \in \mathbf R ^ {n} $ is said to be a fold of $ f $ if

$$ { \mathop{\rm dim} \mathop{\rm Ker} } f ^ { \prime } ( x _ {0} ) = \ { \mathop{\rm dim} \mathop{\rm Coker} } f ^ { \prime } ( x _ {0} ) = 1 $$

and if the Hessian of $ f $ at $ x _ {0} $ is not equal to zero (cf. Hessian of a function). This definition can be generalized to the case of a $ C ^ \infty $- mapping $ f : X \rightarrow Y $ between $ C ^ \infty $- manifolds $ X $ and $ Y $( necessarily of the same dimension), cf. [a1].

The name derives from the following fact: If $ f : X \rightarrow Y $( with $ X $, $ Y $ and $ f $ as above) has a fold at $ x _ {0} \in X $, then there are local coordinates $ ( x _ {1} \dots x _ {n} ) $ in $ X $ vanishing at $ x _ {0} $ and local coordinates $ ( y _ {1} \dots y _ {n} ) $ in $ Y $ vanishing at $ f ( x _ {0} ) $ such that $ f $ has the local representation

$$ f ( x _ {1} \dots x _ {n} ) = \ ( x _ {1} \dots x _ {n-} 1 , x _ {n} ^ {2} ) . $$

References

[a1] L.V. Hörmander, "The analysis of linear partial differential operators" , 3 , Springer (1985) MR1540773 MR0781537 MR0781536 Zbl 0612.35001 Zbl 0601.35001
[a2] V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , 1 , Birkhäuser (1985) (Translated from Russian) MR777682 Zbl 0554.58001
How to Cite This Entry:
Fold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fold&oldid=46949