Difference between revisions of "Fold"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | f0407301.png | ||
+ | $#A+1 = 25 n = 0 | ||
+ | $#C+1 = 25 : ~/encyclopedia/old_files/data/F040/F.0400730 Fold | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A type of singularity of differentiable mappings (cf. [[Singularities of differentiable mappings|Singularities of differentiable mappings]]). | A type of singularity of differentiable mappings (cf. [[Singularities of differentiable mappings|Singularities of differentiable mappings]]). | ||
− | Let | + | Let $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $ |
+ | be a $ C ^ \infty $- | ||
+ | function. Then $ x _ {0} \in \mathbf R ^ {n} $ | ||
+ | is said to be a fold of $ f $ | ||
+ | if | ||
− | + | $$ | |
+ | { \mathop{\rm dim} \mathop{\rm Ker} } f ^ { \prime } ( x _ {0} ) = \ | ||
+ | { \mathop{\rm dim} \mathop{\rm Coker} } f ^ { \prime } ( x _ {0} ) = 1 | ||
+ | $$ | ||
− | and if the Hessian of | + | and if the Hessian of $ f $ |
+ | at $ x _ {0} $ | ||
+ | is not equal to zero (cf. [[Hessian of a function|Hessian of a function]]). This definition can be generalized to the case of a $ C ^ \infty $- | ||
+ | mapping $ f : X \rightarrow Y $ | ||
+ | between $ C ^ \infty $- | ||
+ | manifolds $ X $ | ||
+ | and $ Y $( | ||
+ | necessarily of the same dimension), cf. [[#References|[a1]]]. | ||
− | The name derives from the following fact: If | + | The name derives from the following fact: If $ f : X \rightarrow Y $( |
+ | with $ X $, | ||
+ | $ Y $ | ||
+ | and $ f $ | ||
+ | as above) has a fold at $ x _ {0} \in X $, | ||
+ | then there are local coordinates $ ( x _ {1} \dots x _ {n} ) $ | ||
+ | in $ X $ | ||
+ | vanishing at $ x _ {0} $ | ||
+ | and local coordinates $ ( y _ {1} \dots y _ {n} ) $ | ||
+ | in $ Y $ | ||
+ | vanishing at $ f ( x _ {0} ) $ | ||
+ | such that $ f $ | ||
+ | has the local representation | ||
− | + | $$ | |
+ | f ( x _ {1} \dots x _ {n} ) = \ | ||
+ | ( x _ {1} \dots x _ {n-} 1 , x _ {n} ^ {2} ) . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''3''' , Springer (1985) {{MR|1540773}} {{MR|0781537}} {{MR|0781536}} {{ZBL|0612.35001}} {{ZBL|0601.35001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian) {{MR|777682}} {{ZBL|0554.58001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''3''' , Springer (1985) {{MR|1540773}} {{MR|0781537}} {{MR|0781536}} {{ZBL|0612.35001}} {{ZBL|0601.35001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian) {{MR|777682}} {{ZBL|0554.58001}} </TD></TR></table> |
Latest revision as of 19:39, 5 June 2020
A type of singularity of differentiable mappings (cf. Singularities of differentiable mappings).
Let $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $ be a $ C ^ \infty $- function. Then $ x _ {0} \in \mathbf R ^ {n} $ is said to be a fold of $ f $ if
$$ { \mathop{\rm dim} \mathop{\rm Ker} } f ^ { \prime } ( x _ {0} ) = \ { \mathop{\rm dim} \mathop{\rm Coker} } f ^ { \prime } ( x _ {0} ) = 1 $$
and if the Hessian of $ f $ at $ x _ {0} $ is not equal to zero (cf. Hessian of a function). This definition can be generalized to the case of a $ C ^ \infty $- mapping $ f : X \rightarrow Y $ between $ C ^ \infty $- manifolds $ X $ and $ Y $( necessarily of the same dimension), cf. [a1].
The name derives from the following fact: If $ f : X \rightarrow Y $( with $ X $, $ Y $ and $ f $ as above) has a fold at $ x _ {0} \in X $, then there are local coordinates $ ( x _ {1} \dots x _ {n} ) $ in $ X $ vanishing at $ x _ {0} $ and local coordinates $ ( y _ {1} \dots y _ {n} ) $ in $ Y $ vanishing at $ f ( x _ {0} ) $ such that $ f $ has the local representation
$$ f ( x _ {1} \dots x _ {n} ) = \ ( x _ {1} \dots x _ {n-} 1 , x _ {n} ^ {2} ) . $$
References
[a1] | L.V. Hörmander, "The analysis of linear partial differential operators" , 3 , Springer (1985) MR1540773 MR0781537 MR0781536 Zbl 0612.35001 Zbl 0601.35001 |
[a2] | V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , 1 , Birkhäuser (1985) (Translated from Russian) MR777682 Zbl 0554.58001 |
Fold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fold&oldid=46949