Namespaces
Variants
Actions

Difference between revisions of "Finite-to-one mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex encoded by computer)
 
Line 1: Line 1:
A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403301.png" /> such that the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403302.png" /> of points in the pre-image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403303.png" /> of every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403304.png" /> is finite. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403305.png" /> is the same for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403306.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403307.png" /> is said to be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403309.png" />-to-one mapping.
+
<!--
 +
f0403301.png
 +
$#A+1 = 50 n = 0
 +
$#C+1 = 50 : ~/encyclopedia/old_files/data/F040/F.0400330 Finite\AAhto\AAhone mapping
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
In the differentiable case, the concept of a finite-to-one mapping corresponds to that of a finite mapping. A differentiable mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033010.png" /> of differentiable manifolds is said to be finite at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033011.png" /> if the dimension of the [[Local ring|local ring]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033013.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033014.png" /> is finite. All mappings of this sort are finite-to-one mappings on compact subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033015.png" />; moreover, there exists an open neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033016.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033017.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033018.png" /> consists of a single point. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033019.png" /> measures the multiplicity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033020.png" /> as a root of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033021.png" />; there exists a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033023.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033024.png" /> has at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033025.png" /> points for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033026.png" /> sufficiently close to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033027.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033028.png" />, the finite mappings form a [[Generic set|generic set]] in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033029.png" />; moreover, the set of non-finite mappings has infinite codimension in that space (Tougeron's theorem).
+
A mapping  $  f:  X \rightarrow Y $
 +
such that the number  $  n _ {y} $
 +
of points in the pre-image  $  f ^ { - 1 } y $
 +
of every point  $  y \in Y $
 +
is finite. If $  n _ {y} = n $
 +
is the same for all  $  y $,
 +
$  f $
 +
is said to be an  $  n $-
 +
to-one mapping.
 +
 
 +
In the differentiable case, the concept of a finite-to-one mapping corresponds to that of a finite mapping. A differentiable mapping  $  f: X \rightarrow Y $
 +
of differentiable manifolds is said to be finite at a point  $  x \in X $
 +
if the dimension of the [[Local ring|local ring]]  $  R _ {f} ( x) $
 +
of  $  f $
 +
at  $  x $
 +
is finite. All mappings of this sort are finite-to-one mappings on compact subsets of  $  X $;
 +
moreover, there exists an open neighbourhood  $  U $
 +
of  $  x $
 +
such that  $  f ^ { - 1 } ( f ( x)) \cap U $
 +
consists of a single point. The number  $  k =  \mathop{\rm dim}  R _ {f} ( x) $
 +
measures the multiplicity of  $  x $
 +
as a root of the equation  $  f( y) = x $;
 +
there exists a neighbourhood  $  V $
 +
of  $  x $
 +
such that  $  f ^ { - 1 } ( y) \cap V $
 +
has at most  $  k $
 +
points for every  $  y $
 +
sufficiently close to  $  x $.
 +
 
 +
If  $  \mathop{\rm dim}  X \leq  \mathop{\rm dim}  Y $,  
 +
the finite mappings form a [[Generic set|generic set]] in the space $  C  ^  \infty  ( X, Y) $;  
 +
moreover, the set of non-finite mappings has infinite codimension in that space (Tougeron's theorem).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) {{MR|785749}} {{ZBL|0568.54001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) {{MR|0341518}} {{ZBL|0294.58004}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) {{MR|785749}} {{ZBL|0568.54001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) {{MR|0341518}} {{ZBL|0294.58004}} </TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033030.png" /> be a mapping of differentiable manifolds. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033031.png" /> let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033032.png" /> denote the ring of germs of smooth functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033033.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033034.png" />. This is a local ring with maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033035.png" /> consisting of all germs vanishing at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033037.png" />, then by pullback, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033038.png" /> induces a ring homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033039.png" />. The local ring of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033040.png" /> is now defined as the quotient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033041.png" />.
+
Let $  f: X \rightarrow Y $
 +
be a mapping of differentiable manifolds. For $  x \in X $
 +
let $  C _ {x}  ^  \infty  $
 +
denote the ring of germs of smooth functions $  X \rightarrow \mathbf R $
 +
at $  x $.  
 +
This is a local ring with maximal ideal $  \mathfrak m _ {x} $
 +
consisting of all germs vanishing at $  x $.  
 +
If $  y = f( x) $,  
 +
then by pullback, f $
 +
induces a ring homomorphism $  f ^ { * } : C _ {x}  ^  \infty  \rightarrow C _ {y}  ^  \infty  $.  
 +
The local ring of the mapping f $
 +
is now defined as the quotient ring $  R _ {f} ( x) = C _ {x}  ^  \infty  / C _ {x}  ^  \infty  f ^ {*} \mathfrak m _ {y} $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033042.png" /> are germs of stable mappings then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033044.png" /> are equivalent if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033046.png" /> are isomorphic as rings (Mather's theorem). Here equivalence of germs of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033047.png" /> means that there exist germs of diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033049.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033050.png" /> (near <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033051.png" />).
+
If $  f , g : ( X , x ) \rightarrow ( Y , y ) $
 +
are germs of stable mappings then f $
 +
and $  g $
 +
are equivalent if and only if $  R _ {f} ( x) $
 +
and $  R _ {g} ( x) $
 +
are isomorphic as rings (Mather's theorem). Here equivalence of germs of mappings f , g $
 +
means that there exist germs of diffeomorphisms $  h: ( X , x ) \rightarrow ( X , x ) $
 +
and $  k : ( Y , y ) \rightarrow ( Y , y ) $
 +
such that $  g = k f h  ^ {-} 1 $(
 +
near $  x $).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian) {{MR|777682}} {{ZBL|0554.58001}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian) {{MR|777682}} {{ZBL|0554.58001}} </TD></TR></table>

Latest revision as of 19:39, 5 June 2020


A mapping $ f: X \rightarrow Y $ such that the number $ n _ {y} $ of points in the pre-image $ f ^ { - 1 } y $ of every point $ y \in Y $ is finite. If $ n _ {y} = n $ is the same for all $ y $, $ f $ is said to be an $ n $- to-one mapping.

In the differentiable case, the concept of a finite-to-one mapping corresponds to that of a finite mapping. A differentiable mapping $ f: X \rightarrow Y $ of differentiable manifolds is said to be finite at a point $ x \in X $ if the dimension of the local ring $ R _ {f} ( x) $ of $ f $ at $ x $ is finite. All mappings of this sort are finite-to-one mappings on compact subsets of $ X $; moreover, there exists an open neighbourhood $ U $ of $ x $ such that $ f ^ { - 1 } ( f ( x)) \cap U $ consists of a single point. The number $ k = \mathop{\rm dim} R _ {f} ( x) $ measures the multiplicity of $ x $ as a root of the equation $ f( y) = x $; there exists a neighbourhood $ V $ of $ x $ such that $ f ^ { - 1 } ( y) \cap V $ has at most $ k $ points for every $ y $ sufficiently close to $ x $.

If $ \mathop{\rm dim} X \leq \mathop{\rm dim} Y $, the finite mappings form a generic set in the space $ C ^ \infty ( X, Y) $; moreover, the set of non-finite mappings has infinite codimension in that space (Tougeron's theorem).

References

[1] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) MR785749 Zbl 0568.54001
[2] M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) MR0341518 Zbl 0294.58004

Comments

Let $ f: X \rightarrow Y $ be a mapping of differentiable manifolds. For $ x \in X $ let $ C _ {x} ^ \infty $ denote the ring of germs of smooth functions $ X \rightarrow \mathbf R $ at $ x $. This is a local ring with maximal ideal $ \mathfrak m _ {x} $ consisting of all germs vanishing at $ x $. If $ y = f( x) $, then by pullback, $ f $ induces a ring homomorphism $ f ^ { * } : C _ {x} ^ \infty \rightarrow C _ {y} ^ \infty $. The local ring of the mapping $ f $ is now defined as the quotient ring $ R _ {f} ( x) = C _ {x} ^ \infty / C _ {x} ^ \infty f ^ {*} \mathfrak m _ {y} $.

If $ f , g : ( X , x ) \rightarrow ( Y , y ) $ are germs of stable mappings then $ f $ and $ g $ are equivalent if and only if $ R _ {f} ( x) $ and $ R _ {g} ( x) $ are isomorphic as rings (Mather's theorem). Here equivalence of germs of mappings $ f , g $ means that there exist germs of diffeomorphisms $ h: ( X , x ) \rightarrow ( X , x ) $ and $ k : ( Y , y ) \rightarrow ( Y , y ) $ such that $ g = k f h ^ {-} 1 $( near $ x $).

References

[a1] V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , 1 , Birkhäuser (1985) (Translated from Russian) MR777682 Zbl 0554.58001
How to Cite This Entry:
Finite-to-one mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Finite-to-one_mapping&oldid=46926
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article