Difference between revisions of "Finite-to-one mapping"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | f0403301.png | ||
+ | $#A+1 = 50 n = 0 | ||
+ | $#C+1 = 50 : ~/encyclopedia/old_files/data/F040/F.0400330 Finite\AAhto\AAhone mapping | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | If | + | A mapping $ f: X \rightarrow Y $ |
+ | such that the number $ n _ {y} $ | ||
+ | of points in the pre-image $ f ^ { - 1 } y $ | ||
+ | of every point $ y \in Y $ | ||
+ | is finite. If $ n _ {y} = n $ | ||
+ | is the same for all $ y $, | ||
+ | $ f $ | ||
+ | is said to be an $ n $- | ||
+ | to-one mapping. | ||
+ | |||
+ | In the differentiable case, the concept of a finite-to-one mapping corresponds to that of a finite mapping. A differentiable mapping $ f: X \rightarrow Y $ | ||
+ | of differentiable manifolds is said to be finite at a point $ x \in X $ | ||
+ | if the dimension of the [[Local ring|local ring]] $ R _ {f} ( x) $ | ||
+ | of $ f $ | ||
+ | at $ x $ | ||
+ | is finite. All mappings of this sort are finite-to-one mappings on compact subsets of $ X $; | ||
+ | moreover, there exists an open neighbourhood $ U $ | ||
+ | of $ x $ | ||
+ | such that $ f ^ { - 1 } ( f ( x)) \cap U $ | ||
+ | consists of a single point. The number $ k = \mathop{\rm dim} R _ {f} ( x) $ | ||
+ | measures the multiplicity of $ x $ | ||
+ | as a root of the equation $ f( y) = x $; | ||
+ | there exists a neighbourhood $ V $ | ||
+ | of $ x $ | ||
+ | such that $ f ^ { - 1 } ( y) \cap V $ | ||
+ | has at most $ k $ | ||
+ | points for every $ y $ | ||
+ | sufficiently close to $ x $. | ||
+ | |||
+ | If $ \mathop{\rm dim} X \leq \mathop{\rm dim} Y $, | ||
+ | the finite mappings form a [[Generic set|generic set]] in the space $ C ^ \infty ( X, Y) $; | ||
+ | moreover, the set of non-finite mappings has infinite codimension in that space (Tougeron's theorem). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) {{MR|785749}} {{ZBL|0568.54001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) {{MR|0341518}} {{ZBL|0294.58004}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) {{MR|785749}} {{ZBL|0568.54001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) {{MR|0341518}} {{ZBL|0294.58004}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Let | + | Let $ f: X \rightarrow Y $ |
+ | be a mapping of differentiable manifolds. For $ x \in X $ | ||
+ | let $ C _ {x} ^ \infty $ | ||
+ | denote the ring of germs of smooth functions $ X \rightarrow \mathbf R $ | ||
+ | at $ x $. | ||
+ | This is a local ring with maximal ideal $ \mathfrak m _ {x} $ | ||
+ | consisting of all germs vanishing at $ x $. | ||
+ | If $ y = f( x) $, | ||
+ | then by pullback, $ f $ | ||
+ | induces a ring homomorphism $ f ^ { * } : C _ {x} ^ \infty \rightarrow C _ {y} ^ \infty $. | ||
+ | The local ring of the mapping $ f $ | ||
+ | is now defined as the quotient ring $ R _ {f} ( x) = C _ {x} ^ \infty / C _ {x} ^ \infty f ^ {*} \mathfrak m _ {y} $. | ||
− | If | + | If $ f , g : ( X , x ) \rightarrow ( Y , y ) $ |
+ | are germs of stable mappings then $ f $ | ||
+ | and $ g $ | ||
+ | are equivalent if and only if $ R _ {f} ( x) $ | ||
+ | and $ R _ {g} ( x) $ | ||
+ | are isomorphic as rings (Mather's theorem). Here equivalence of germs of mappings $ f , g $ | ||
+ | means that there exist germs of diffeomorphisms $ h: ( X , x ) \rightarrow ( X , x ) $ | ||
+ | and $ k : ( Y , y ) \rightarrow ( Y , y ) $ | ||
+ | such that $ g = k f h ^ {-} 1 $( | ||
+ | near $ x $). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian) {{MR|777682}} {{ZBL|0554.58001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian) {{MR|777682}} {{ZBL|0554.58001}} </TD></TR></table> |
Latest revision as of 19:39, 5 June 2020
A mapping $ f: X \rightarrow Y $
such that the number $ n _ {y} $
of points in the pre-image $ f ^ { - 1 } y $
of every point $ y \in Y $
is finite. If $ n _ {y} = n $
is the same for all $ y $,
$ f $
is said to be an $ n $-
to-one mapping.
In the differentiable case, the concept of a finite-to-one mapping corresponds to that of a finite mapping. A differentiable mapping $ f: X \rightarrow Y $ of differentiable manifolds is said to be finite at a point $ x \in X $ if the dimension of the local ring $ R _ {f} ( x) $ of $ f $ at $ x $ is finite. All mappings of this sort are finite-to-one mappings on compact subsets of $ X $; moreover, there exists an open neighbourhood $ U $ of $ x $ such that $ f ^ { - 1 } ( f ( x)) \cap U $ consists of a single point. The number $ k = \mathop{\rm dim} R _ {f} ( x) $ measures the multiplicity of $ x $ as a root of the equation $ f( y) = x $; there exists a neighbourhood $ V $ of $ x $ such that $ f ^ { - 1 } ( y) \cap V $ has at most $ k $ points for every $ y $ sufficiently close to $ x $.
If $ \mathop{\rm dim} X \leq \mathop{\rm dim} Y $, the finite mappings form a generic set in the space $ C ^ \infty ( X, Y) $; moreover, the set of non-finite mappings has infinite codimension in that space (Tougeron's theorem).
References
[1] | A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) MR785749 Zbl 0568.54001 |
[2] | M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) MR0341518 Zbl 0294.58004 |
Comments
Let $ f: X \rightarrow Y $ be a mapping of differentiable manifolds. For $ x \in X $ let $ C _ {x} ^ \infty $ denote the ring of germs of smooth functions $ X \rightarrow \mathbf R $ at $ x $. This is a local ring with maximal ideal $ \mathfrak m _ {x} $ consisting of all germs vanishing at $ x $. If $ y = f( x) $, then by pullback, $ f $ induces a ring homomorphism $ f ^ { * } : C _ {x} ^ \infty \rightarrow C _ {y} ^ \infty $. The local ring of the mapping $ f $ is now defined as the quotient ring $ R _ {f} ( x) = C _ {x} ^ \infty / C _ {x} ^ \infty f ^ {*} \mathfrak m _ {y} $.
If $ f , g : ( X , x ) \rightarrow ( Y , y ) $ are germs of stable mappings then $ f $ and $ g $ are equivalent if and only if $ R _ {f} ( x) $ and $ R _ {g} ( x) $ are isomorphic as rings (Mather's theorem). Here equivalence of germs of mappings $ f , g $ means that there exist germs of diffeomorphisms $ h: ( X , x ) \rightarrow ( X , x ) $ and $ k : ( Y , y ) \rightarrow ( Y , y ) $ such that $ g = k f h ^ {-} 1 $( near $ x $).
References
[a1] | V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , 1 , Birkhäuser (1985) (Translated from Russian) MR777682 Zbl 0554.58001 |
Finite-to-one mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Finite-to-one_mapping&oldid=46926