Difference between revisions of "FKG inequality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | f1101201.png | ||
+ | $#A+1 = 19 n = 0 | ||
+ | $#C+1 = 19 : ~/encyclopedia/old_files/data/F110/F.1100120 FKG inequality, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Fortuin–Kasteleyn–Ginibre inequality'' | ''Fortuin–Kasteleyn–Ginibre inequality'' | ||
− | An inequality [[#References|[a3]]] that began a series of [[Correlation inequalities|correlation inequalities]] for finite partially ordered sets. Let | + | An inequality [[#References|[a3]]] that began a series of [[Correlation inequalities|correlation inequalities]] for finite partially ordered sets. Let $ \Gamma $ |
+ | be a finite [[Partially ordered set|partially ordered set]] ordered by $ \prec $( | ||
+ | irreflexive, transitive) with $ ( \Gamma, \prec ) $ | ||
+ | a [[Distributive lattice|distributive lattice]]: $ a \lor b = \min \{ {z \in \Gamma } : {a \cle z, b \cle z } \} $, | ||
+ | $ a \wedge b = \max \{ {z \in \Gamma } : {z \cle a, z \cle b } \} $, | ||
+ | and $ a \wedge ( b \lor c ) = ( a \wedge b ) \lor ( a \wedge c ) $ | ||
+ | for all $ a,b, c \in \Gamma $. | ||
+ | Suppose $ \mu : \Gamma \rightarrow {[ 0, \infty ) } $ | ||
+ | is log supermodular: | ||
− | + | $$ | |
+ | \mu ( a ) \mu ( b ) \leq \mu ( a \lor b ) \mu ( a \wedge b ) \textrm{ for all } a, b \in \Gamma, | ||
+ | $$ | ||
− | and that | + | and that $ f : \Gamma \rightarrow \mathbf R $ |
+ | and $ g : \Gamma \rightarrow \mathbf R $ | ||
+ | are non-decreasing: | ||
− | + | $$ | |
+ | a \prec b \Rightarrow \{ f ( a ) \leq f ( b ) , g ( a ) \leq g ( b ) \} \textrm{ for all } a,b \in \Gamma . | ||
+ | $$ | ||
The FKG inequality is: | The FKG inequality is: | ||
− | + | $$ | |
+ | \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) g ( a ) \right ] \leq | ||
+ | $$ | ||
− | + | $$ | |
+ | \leq | ||
+ | \left [ \sum _ {a \in \Gamma } \mu ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) g ( a ) \right ] . | ||
+ | $$ | ||
− | If | + | If $ \Gamma $ |
+ | is a [[Boolean algebra|Boolean algebra]] and $ \mu $ | ||
+ | is a [[Probability measure|probability measure]] on $ \Gamma $, | ||
+ | the inequality is $ {\mathsf E} _ \mu ( f ) {\mathsf E} _ \mu ( g ) \leq {\mathsf E} _ \mu ( fg ) $, | ||
+ | where $ {\mathsf E} _ \mu $ | ||
+ | denotes [[Mathematical expectation|mathematical expectation]]. | ||
Related inequalities are discussed in [[#References|[a1]]], [[#References|[a2]]], [[#References|[a4]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]]. | Related inequalities are discussed in [[#References|[a1]]], [[#References|[a2]]], [[#References|[a4]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]], [[#References|[a8]]], [[#References|[a9]]]. |
Revision as of 19:38, 5 June 2020
Fortuin–Kasteleyn–Ginibre inequality
An inequality [a3] that began a series of correlation inequalities for finite partially ordered sets. Let $ \Gamma $ be a finite partially ordered set ordered by $ \prec $( irreflexive, transitive) with $ ( \Gamma, \prec ) $ a distributive lattice: $ a \lor b = \min \{ {z \in \Gamma } : {a \cle z, b \cle z } \} $, $ a \wedge b = \max \{ {z \in \Gamma } : {z \cle a, z \cle b } \} $, and $ a \wedge ( b \lor c ) = ( a \wedge b ) \lor ( a \wedge c ) $ for all $ a,b, c \in \Gamma $. Suppose $ \mu : \Gamma \rightarrow {[ 0, \infty ) } $ is log supermodular:
$$ \mu ( a ) \mu ( b ) \leq \mu ( a \lor b ) \mu ( a \wedge b ) \textrm{ for all } a, b \in \Gamma, $$
and that $ f : \Gamma \rightarrow \mathbf R $ and $ g : \Gamma \rightarrow \mathbf R $ are non-decreasing:
$$ a \prec b \Rightarrow \{ f ( a ) \leq f ( b ) , g ( a ) \leq g ( b ) \} \textrm{ for all } a,b \in \Gamma . $$
The FKG inequality is:
$$ \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) g ( a ) \right ] \leq $$
$$ \leq \left [ \sum _ {a \in \Gamma } \mu ( a ) \right ] \left [ \sum _ {a \in \Gamma } \mu ( a ) f ( a ) g ( a ) \right ] . $$
If $ \Gamma $ is a Boolean algebra and $ \mu $ is a probability measure on $ \Gamma $, the inequality is $ {\mathsf E} _ \mu ( f ) {\mathsf E} _ \mu ( g ) \leq {\mathsf E} _ \mu ( fg ) $, where $ {\mathsf E} _ \mu $ denotes mathematical expectation.
Related inequalities are discussed in [a1], [a2], [a4], [a5], [a6], [a7], [a8], [a9].
See also Ahlswede–Daykin inequality; Fishburn–Shepp inequality; Holley inequality.
References
[a1] | B. Bollobás, "Combinatorics" , Cambridge Univ. Press (1986) |
[a2] | P.C. Fishburn, "Correlation in partially ordered sets" Discrete Appl. Math. , 39 (1992) pp. 173–191 |
[a3] | C.M. Fortuin, P.N. Kasteleyn, J. Ginibre, "Correlation inequalities for some partially ordered sets" Comm. Math. Phys. , 22 (1971) pp. 89–103 |
[a4] | R.L. Graham, "Linear extensions of partial orders and the FKG inequality" I. Rival (ed.) , Ordered sets , Reidel (1982) pp. 213–236 |
[a5] | R.L. Graham, "Applications of the FKG inequality and its relatives" , Proc. 12th Internat. Symp. Math. Programming , Springer (1983) pp. 115–131 |
[a6] | R. Holley, "Remarks on the FKG inequalities" Comm. Math. Phys. , 36 (1974) pp. 227–231 |
[a7] | K. Joag-Dev, L.A. Shepp, R.A. Vitale, "Remarks and open problems in the area of the FKG inequality" , Inequalities Stat. Probab. , IMS Lecture Notes , 5 (1984) pp. 121–126 |
[a8] | L.A. Shepp, "The XYZ conjecture and the FKG inequality" Ann. of Probab. , 10 (1982) pp. 824–827 |
[a9] | P M. Winkler, "Correlation and order" Contemp. Math. , 57 (1986) pp. 151–174 |
FKG inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=FKG_inequality&oldid=46896