Namespaces
Variants
Actions

Difference between revisions of "Extremal field"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A domain in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e0371601.png" />-dimensional space of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e0371602.png" />, covered without intersections by an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e0371603.png" />-parameter family of extremals of the functional
+
<!--
 +
e0371601.png
 +
$#A+1 = 58 n = 0
 +
$#C+1 = 58 : ~/encyclopedia/old_files/data/E037/E.0307160 Extremal field
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e0371604.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e0371605.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e0371606.png" /> are the initial and final points through which the extremals of the family pass.
+
A domain in the  $  ( n + 1 ) $-
 +
dimensional space of the variables  $  x , y _ {1} \dots y _ {n} $,
 +
covered without intersections by an  $  n $-
 +
parameter family of extremals of the functional
 +
 
 +
$$ \tag{1 }
 +
J  =  \int\limits _ { ( } A) ^ { ( }  B) F ( x , y _ {1} \dots
 +
y _ {n} , y _ {1}  ^  \prime  \dots y _ {n}  ^  \prime  )  d x ,
 +
$$
 +
 
 +
where $  A $
 +
and $  B $
 +
are the initial and final points through which the extremals of the family pass.
  
 
One must distinguish between proper (or general) and central extremal fields. A proper extremal field corresponds to the case when the extremals of the family are transversal to some surface
 
One must distinguish between proper (or general) and central extremal fields. A proper extremal field corresponds to the case when the extremals of the family are transversal to some surface
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e0371607.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\phi ( x , y _ {1} \dots y _ {n} )  = 0 ,
 +
$$
  
 
that is, on this surface the transversality conditions
 
that is, on this surface the transversality conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e0371608.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
  
hold. For a proper extremal field the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e0371609.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716010.png" />) in (1) belongs to the surface (2) and the condition (3) is satisfied at it.
+
\frac{F - \sum _ {i=} 1  ^ {n} y _ {i}  ^  \prime  F _ {y _ {i}  ^  \prime  } }{\phi _ {x} }
 +
  =
 +
\frac{F _ {y _ {1}  ^  \prime  } }{\phi _ {y _ {1}  } }
 +
  = \dots =
 +
\frac{F _ {y _ {n}  ^  \prime  } }{\phi _ {y _ {n}  } }
  
A central extremal field corresponds to the case when the extremals of the family emanate from one point lying outside the field, for example, from a common initial point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716011.png" />.
+
$$
  
The slope of an extremal field is the vector-function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716012.png" /> associating with every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716013.png" /> of the field the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716014.png" />.
+
hold. For a proper extremal field the point $  A $(
 +
or  $  B  $)
 +
in (1) belongs to the surface (2) and the condition (3) is satisfied at it.
  
For problems with moving end points, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716015.png" /> is an extremal, the differential of the integral (1) has the form
+
A central extremal field corresponds to the case when the extremals of the family emanate from one point lying outside the field, for example, from a common initial point  $  A $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
The slope of an extremal field is the vector-function  $  u ( x , y ) = ( u _ {1} ( x , y ) \dots u _ {n} ( x , y ) ) $
 +
associating with every point  $  ( x , y ) = ( x , y _ {1} \dots y _ {n} ) $
 +
of the field the vector  $  y ( x) = ( y _ {1}  ^  \prime  ( x) \dots y _ {n}  ^  \prime  ( x) ) $.
  
where the differentials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716018.png" /> are computed along the lines of displacement of the moving end points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716020.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716021.png" /> is the angular coefficient of the tangent to the extremal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716022.png" />.
+
For problems with moving end points, when  $  y ( x) $
 +
is an extremal, the differential of the integral (1) has the form
 +
 
 +
$$ \tag{4 }
 +
d J  = \left [ \left ( F - \sum _ { i= } 1 ^ { n }  y _ {i}  ^  \prime
 +
F _ {y _ {i}  ^  \prime  } \right )  d x + \sum _ { i= } 1 ^ { n }  F _ {y _ {i}  ^  \prime  }  d y _ {i} \right ] _ {x _ {1}  } ^ {x _ {2} } ,
 +
$$
 +
 
 +
where the differentials  $  dx $
 +
and $  dy $
 +
are computed along the lines of displacement of the moving end points $  A ( x _ {1} , y ( x _ {1} ) ) $
 +
and $  B ( x _ {2} , y ( x _ {2} ) ) $,  
 +
and $  y  ^  \prime  $
 +
is the angular coefficient of the tangent to the extremal $  y ( x) $.
  
 
The expression between square brackets in (4) can be rewritten in the form
 
The expression between square brackets in (4) can be rewritten in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
- H  d x + \sum _ { i= } 1 ^ { n }  p _ {i}  d y _ {i} ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716024.png" /></td> </tr></table>
+
$$
 +
= - F ( x , y , u ( x , y ) ) +
 +
\sum _ { i= } 1 ^ { n }
 +
u _ {i} ( x , y ) F _ {y _ {i}  ^  \prime  }
 +
( x , y , u ( x , y ) ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716025.png" /></td> </tr></table>
+
$$
 +
p _ {i}  = F _ {y _ {i}  ^  \prime  } ( x , y , u ( x , y ) ) .
 +
$$
  
In an extremal field the expression (5) is the total differential of some function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716026.png" />, since
+
In an extremal field the expression (5) is the total differential of some function of $  x , y _ {1} \dots y _ {n} $,
 +
since
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716027.png" /></td> </tr></table>
+
$$
 +
-  
 +
\frac{\partial  H }{\partial  y _ {i} }
 +
  = \
 +
 
 +
\frac{\partial  p _ {i} }{\partial  x }
 +
,\ \
 +
 
 +
\frac{\partial  p _ {i} }{\partial  y _ {k} }
 +
  = \
 +
 
 +
\frac{\partial  p _ {k} }{\partial  y _ {i} }
 +
,\ \
 +
i , k = 1 \dots n .
 +
$$
  
 
This function is, up to a constant term, equal to the curvilinear integral
 
This function is, up to a constant term, equal to the curvilinear integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716028.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
$$ \tag{6 }
 +
\int\limits _ { C } - H ( x , y , p ) d x +
 +
\sum _ { i= } 1 ^ { n }  p _ {i}  d y _ {i} ,
 +
$$
  
and is called the invariant Hilbert integral. In (6) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716029.png" /> denotes an arbitrary curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716030.png" /> lying in the extremal field and joining the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716032.png" />. The term  "invariant"  emphasizes the fact that the integral (6) does not depend on the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716033.png" /> and is determined only by the given end points.
+
and is called the invariant Hilbert integral. In (6) $  C $
 +
denotes an arbitrary curve $  y ( x) $
 +
lying in the extremal field and joining the points $  A $
 +
and $  B $.  
 +
The term  "invariant"  emphasizes the fact that the integral (6) does not depend on the choice of $  C $
 +
and is determined only by the given end points.
  
 
The Hilbert integral (6) can be rewritten in the equivalent form
 
The Hilbert integral (6) can be rewritten in the equivalent form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
+
$$ \tag{7 }
 +
\int\limits _ { C } \left [ F ( x , y , u ) - \sum _ { i= } 1 ^ { n }
 +
u _ {i} F _ {y _ {i}  ^  \prime  } ( x , y , u ( x , y )) \right ]  d x +
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716035.png" /></td> </tr></table>
+
$$
 +
+
 +
\sum _ { i= } 1 ^ { n }  F _ {y _ {i}  ^  \prime  } ( x , y , u )  d y _ {i\ } =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716036.png" /></td> </tr></table>
+
$$
 +
= \
 +
\int\limits _ { C } \left ( F ( x , y , u ) + \sum _ { i= } 1 ^ { n }  \left (
 +
\frac{d y _ {i} }{dx}
 +
- u _ {i} \right ) F _ {y _ {i}  ^  \prime  } ( x , y , u ) \right )  d x .
 +
$$
  
If an extremal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716037.png" /> is taken as the comparison curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716038.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716039.png" />, and the Hilbert integral (7) becomes
+
If an extremal $  E $
 +
is taken as the comparison curve $  C $,  
 +
then $  d y _ {i} / d x = u _ {i} $,  
 +
and the Hilbert integral (7) becomes
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716040.png" /></td> <td valign="top" style="width:5%;text-align:right;">(8)</td></tr></table>
+
$$ \tag{8 }
 +
\int\limits _ { E } F ( x , y , u ( x , y ) ) d x ,
 +
$$
  
which coincides with the geodesic distance between the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716042.png" />, defined as the value of the functional (1) on the extremal joining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716044.png" />.
+
which coincides with the geodesic distance between the points $  A $
 +
and $  B $,  
 +
defined as the value of the functional (1) on the extremal joining $  A $
 +
and $  B $.
  
 
The above property of an extremal field and of the invariant Hilbert integral lies at the basis of the theory of sufficient conditions for an extremum, as developed by K. Weierstrass. It makes it possible, in the study of the sign of the increment of the functional
 
The above property of an extremal field and of the invariant Hilbert integral lies at the basis of the theory of sufficient conditions for an extremum, as developed by K. Weierstrass. It makes it possible, in the study of the sign of the increment of the functional
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716045.png" /></td> <td valign="top" style="width:5%;text-align:right;">(9)</td></tr></table>
+
$$ \tag{9 }
 +
\Delta J  = J ( C) - J ( E) ,
 +
$$
  
to express the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716046.png" /> along an extremal (under the assumption that the latter is enclosed by the extremal field) in terms of the invariant Hilbert integral over the comparison curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716047.png" /> joining those two points. Thus, the increment of the functional (9) is represented as a curvilinear integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716048.png" />:
+
to express the value of $  J ( E) $
 +
along an extremal (under the assumption that the latter is enclosed by the extremal field) in terms of the invariant Hilbert integral over the comparison curve $  C $
 +
joining those two points. Thus, the increment of the functional (9) is represented as a curvilinear integral over $  C $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716049.png" /></td> <td valign="top" style="width:5%;text-align:right;">(10)</td></tr></table>
+
$$ \tag{10 }
 +
\Delta J  =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716050.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { C } \left ( F ( x , y , y  ^  \prime  ) - F ( x , y
 +
, u ) - \sum _ { i= } 1 ^ { n }  ( y _ {i}  ^  \prime  - u _ {i} ) F _ {y _ {i}  ^  \prime  } ( x , y , u ) \right )  d x =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716051.png" /></td> </tr></table>
+
$$
 +
= \
 +
\int\limits _ { C } {\mathcal E} ( x , y , u , y  ^  \prime  )  d x .
 +
$$
  
The integrand <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716052.png" /> in (10) is called the Weierstrass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716053.png" />-function. If this function is non-negative (non-positive) at any point of the extremal field for arbitrary finite values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716054.png" />, then the extremal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716055.png" /> yields a strong minimum (maximum) of the functional (1) on the set of all comparison curves joining the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716056.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716057.png" />.
+
The integrand $  {\mathcal E} ( x , y , u , y  ^  \prime  ) $
 +
in (10) is called the Weierstrass $  {\mathcal E} $-
 +
function. If this function is non-negative (non-positive) at any point of the extremal field for arbitrary finite values of $  y  ^  \prime  $,  
 +
then the extremal $  E $
 +
yields a strong minimum (maximum) of the functional (1) on the set of all comparison curves joining the points $  A $
 +
and $  B $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.A. Bliss,  "Lectures on the calculus of variations" , Chicago Univ. Press  (1947)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.A. Lavrent'ev,  L.A. Lyusternik,  "A course in variational calculus" , Moscow-Leningrad  (1950)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.I. Akhiezer,  "The calculus of variations" , Blaisdell  (1962)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.A. Bliss,  "Lectures on the calculus of variations" , Chicago Univ. Press  (1947)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.A. Lavrent'ev,  L.A. Lyusternik,  "A course in variational calculus" , Moscow-Leningrad  (1950)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.I. Akhiezer,  "The calculus of variations" , Blaisdell  (1962)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
One also speaks of a field of stationary curves of a variational problem, a notion defined completely analogously to the one of a field of extremals of a variational problem above. Correspondingly one has the slope function of a field of stationary curves. Cf. also [[Extremal set|Extremal set]].
 
One also speaks of a field of stationary curves of a variational problem, a notion defined completely analogously to the one of a field of extremals of a variational problem above. Correspondingly one has the slope function of a field of stationary curves. Cf. also [[Extremal set|Extremal set]].
  
For Weierstrass' approach see [[Weierstrass conditions (for a variational extremum)|Weierstrass conditions (for a variational extremum)]]; [[Weierstrass E-function|Weierstrass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037160/e03716058.png" />-function]].
+
For Weierstrass' approach see [[Weierstrass conditions (for a variational extremum)|Weierstrass conditions (for a variational extremum)]]; [[Weierstrass E-function|Weierstrass $  {\mathcal E} $-
 +
function]].
  
 
An extremal field is also called a field of extremals.
 
An extremal field is also called a field of extremals.

Revision as of 19:38, 5 June 2020


A domain in the $ ( n + 1 ) $- dimensional space of the variables $ x , y _ {1} \dots y _ {n} $, covered without intersections by an $ n $- parameter family of extremals of the functional

$$ \tag{1 } J = \int\limits _ { ( } A) ^ { ( } B) F ( x , y _ {1} \dots y _ {n} , y _ {1} ^ \prime \dots y _ {n} ^ \prime ) d x , $$

where $ A $ and $ B $ are the initial and final points through which the extremals of the family pass.

One must distinguish between proper (or general) and central extremal fields. A proper extremal field corresponds to the case when the extremals of the family are transversal to some surface

$$ \tag{2 } \phi ( x , y _ {1} \dots y _ {n} ) = 0 , $$

that is, on this surface the transversality conditions

$$ \tag{3 } \frac{F - \sum _ {i=} 1 ^ {n} y _ {i} ^ \prime F _ {y _ {i} ^ \prime } }{\phi _ {x} } = \frac{F _ {y _ {1} ^ \prime } }{\phi _ {y _ {1} } } = \dots = \frac{F _ {y _ {n} ^ \prime } }{\phi _ {y _ {n} } } $$

hold. For a proper extremal field the point $ A $( or $ B $) in (1) belongs to the surface (2) and the condition (3) is satisfied at it.

A central extremal field corresponds to the case when the extremals of the family emanate from one point lying outside the field, for example, from a common initial point $ A $.

The slope of an extremal field is the vector-function $ u ( x , y ) = ( u _ {1} ( x , y ) \dots u _ {n} ( x , y ) ) $ associating with every point $ ( x , y ) = ( x , y _ {1} \dots y _ {n} ) $ of the field the vector $ y ( x) = ( y _ {1} ^ \prime ( x) \dots y _ {n} ^ \prime ( x) ) $.

For problems with moving end points, when $ y ( x) $ is an extremal, the differential of the integral (1) has the form

$$ \tag{4 } d J = \left [ \left ( F - \sum _ { i= } 1 ^ { n } y _ {i} ^ \prime F _ {y _ {i} ^ \prime } \right ) d x + \sum _ { i= } 1 ^ { n } F _ {y _ {i} ^ \prime } d y _ {i} \right ] _ {x _ {1} } ^ {x _ {2} } , $$

where the differentials $ dx $ and $ dy $ are computed along the lines of displacement of the moving end points $ A ( x _ {1} , y ( x _ {1} ) ) $ and $ B ( x _ {2} , y ( x _ {2} ) ) $, and $ y ^ \prime $ is the angular coefficient of the tangent to the extremal $ y ( x) $.

The expression between square brackets in (4) can be rewritten in the form

$$ \tag{5 } - H d x + \sum _ { i= } 1 ^ { n } p _ {i} d y _ {i} , $$

where

$$ H = - F ( x , y , u ( x , y ) ) + \sum _ { i= } 1 ^ { n } u _ {i} ( x , y ) F _ {y _ {i} ^ \prime } ( x , y , u ( x , y ) ) , $$

$$ p _ {i} = F _ {y _ {i} ^ \prime } ( x , y , u ( x , y ) ) . $$

In an extremal field the expression (5) is the total differential of some function of $ x , y _ {1} \dots y _ {n} $, since

$$ - \frac{\partial H }{\partial y _ {i} } = \ \frac{\partial p _ {i} }{\partial x } ,\ \ \frac{\partial p _ {i} }{\partial y _ {k} } = \ \frac{\partial p _ {k} }{\partial y _ {i} } ,\ \ i , k = 1 \dots n . $$

This function is, up to a constant term, equal to the curvilinear integral

$$ \tag{6 } \int\limits _ { C } - H ( x , y , p ) d x + \sum _ { i= } 1 ^ { n } p _ {i} d y _ {i} , $$

and is called the invariant Hilbert integral. In (6) $ C $ denotes an arbitrary curve $ y ( x) $ lying in the extremal field and joining the points $ A $ and $ B $. The term "invariant" emphasizes the fact that the integral (6) does not depend on the choice of $ C $ and is determined only by the given end points.

The Hilbert integral (6) can be rewritten in the equivalent form

$$ \tag{7 } \int\limits _ { C } \left [ F ( x , y , u ) - \sum _ { i= } 1 ^ { n } u _ {i} F _ {y _ {i} ^ \prime } ( x , y , u ( x , y )) \right ] d x + $$

$$ + \sum _ { i= } 1 ^ { n } F _ {y _ {i} ^ \prime } ( x , y , u ) d y _ {i\ } = $$

$$ = \ \int\limits _ { C } \left ( F ( x , y , u ) + \sum _ { i= } 1 ^ { n } \left ( \frac{d y _ {i} }{dx} - u _ {i} \right ) F _ {y _ {i} ^ \prime } ( x , y , u ) \right ) d x . $$

If an extremal $ E $ is taken as the comparison curve $ C $, then $ d y _ {i} / d x = u _ {i} $, and the Hilbert integral (7) becomes

$$ \tag{8 } \int\limits _ { E } F ( x , y , u ( x , y ) ) d x , $$

which coincides with the geodesic distance between the points $ A $ and $ B $, defined as the value of the functional (1) on the extremal joining $ A $ and $ B $.

The above property of an extremal field and of the invariant Hilbert integral lies at the basis of the theory of sufficient conditions for an extremum, as developed by K. Weierstrass. It makes it possible, in the study of the sign of the increment of the functional

$$ \tag{9 } \Delta J = J ( C) - J ( E) , $$

to express the value of $ J ( E) $ along an extremal (under the assumption that the latter is enclosed by the extremal field) in terms of the invariant Hilbert integral over the comparison curve $ C $ joining those two points. Thus, the increment of the functional (9) is represented as a curvilinear integral over $ C $:

$$ \tag{10 } \Delta J = $$

$$ \int\limits _ { C } \left ( F ( x , y , y ^ \prime ) - F ( x , y , u ) - \sum _ { i= } 1 ^ { n } ( y _ {i} ^ \prime - u _ {i} ) F _ {y _ {i} ^ \prime } ( x , y , u ) \right ) d x = $$

$$ = \ \int\limits _ { C } {\mathcal E} ( x , y , u , y ^ \prime ) d x . $$

The integrand $ {\mathcal E} ( x , y , u , y ^ \prime ) $ in (10) is called the Weierstrass $ {\mathcal E} $- function. If this function is non-negative (non-positive) at any point of the extremal field for arbitrary finite values of $ y ^ \prime $, then the extremal $ E $ yields a strong minimum (maximum) of the functional (1) on the set of all comparison curves joining the points $ A $ and $ B $.

References

[1] G.A. Bliss, "Lectures on the calculus of variations" , Chicago Univ. Press (1947)
[2] M.A. Lavrent'ev, L.A. Lyusternik, "A course in variational calculus" , Moscow-Leningrad (1950) (In Russian)
[3] N.I. Akhiezer, "The calculus of variations" , Blaisdell (1962) (Translated from Russian)

Comments

One also speaks of a field of stationary curves of a variational problem, a notion defined completely analogously to the one of a field of extremals of a variational problem above. Correspondingly one has the slope function of a field of stationary curves. Cf. also Extremal set.

For Weierstrass' approach see Weierstrass conditions (for a variational extremum); Weierstrass $ {\mathcal E} $- function.

An extremal field is also called a field of extremals.

References

[a1] W.H. Fleming, R.W. Rishel, "Deterministic and stochastic optimal control" , Springer (1975)
[a2] I.M. Gel'fand, S.V. Fomin, "Calculus of variations" , Prentice-Hall (1963) (Translated from Russian)
[a3] R. Courant, D. Hilbert, "Methods of mathematical physics" , 1–2 , Interscience (1953–1962) (Translated from German)
How to Cite This Entry:
Extremal field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Extremal_field&oldid=46891
This article was adapted from an original article by I.B. Vapnyarskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article