Difference between revisions of "Exterior algebra"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | e0370801.png | ||
+ | $#A+1 = 71 n = 0 | ||
+ | $#C+1 = 71 : ~/encyclopedia/old_files/data/E037/E.0307080 Exterior algebra, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''Grassmann algebra, of a vector space $ V $ | |
+ | over a field $ k $'' | ||
− | + | An associative algebra over $ k $, | |
+ | the operation in which is denoted by the symbol $ \wedge $, | ||
+ | with generating elements $ 1, e _ {1} \dots e _ {n} $ | ||
+ | where $ e _ {1} \dots e _ {n} $ | ||
+ | is a basis of $ V $, | ||
+ | and with defining relations | ||
− | + | $$ | |
+ | e _ {i} \wedge e _ {j} = - e _ {j} \wedge e _ {i} \ \ | ||
+ | ( i, j = 1 \dots n),\ \ | ||
+ | e _ {i} \wedge e _ {i} = 0, | ||
+ | $$ | ||
− | + | $$ | |
+ | 1 \wedge e _ {i} = e _ {i} \wedge 1 = e _ {i} \ ( i = 1 \dots n),\ 1 \wedge 1 = 1. | ||
+ | $$ | ||
− | The | + | The exterior algebra does not depend on the choice of the basis and is denoted by $ \wedge V $. |
+ | The subspace $ \wedge ^ {r} V $( | ||
+ | $ r = 0, 1 , . . . $) | ||
+ | in $ \wedge V $ | ||
+ | generated by the elements of the form $ e _ {i _ {1} } \wedge \dots \wedge e _ {i _ {r} } $ | ||
+ | is said to be the $ r $- | ||
+ | th exterior power of the space $ V $. | ||
+ | The following equalities are valid: $ \mathop{\rm dim} \wedge ^ {r} V = ( _ {r} ^ {n} ) = C _ {n} ^ {r} $, | ||
+ | $ r = 0 \dots n $, | ||
+ | $ \wedge ^ {r} V = 0 $, | ||
+ | $ r > n $. | ||
+ | In addition, $ v \wedge u = (- 1) ^ {rs} u \wedge v $ | ||
+ | if $ u \in \wedge ^ {r} V $, | ||
+ | $ v \in \wedge ^ {s} V $. | ||
+ | The elements of the space $ \wedge ^ {r} V $ | ||
+ | are said to be $ r $- | ||
+ | vectors; they may also be regarded as skew-symmetric $ r $- | ||
+ | times contravariant tensors in $ V $( | ||
+ | cf. [[Exterior product|Exterior product]]). | ||
+ | |||
+ | $ r $- | ||
+ | vectors are closely connected with $ r $- | ||
+ | dimensional subspaces in $ V $: | ||
+ | Linearly independent systems of vectors $ x _ {1} \dots x _ {r} $ | ||
+ | and $ y _ {1} \dots y _ {r} $ | ||
+ | of $ V $ | ||
+ | generate the same subspace if and only if the $ r $- | ||
+ | vectors $ x _ {1} \wedge \dots \wedge x _ {r} $ | ||
+ | and $ y _ {1} \wedge \dots \wedge y _ {r} $ | ||
+ | are proportional. This fact served as one of the starting points in the studies of H. Grassmann [[#References|[1]]], who introduced exterior algebras as the algebraic apparatus to describe the generation of multi-dimensional subspaces by one-dimensional subspaces. The theory of determinants is readily constructed with the aid of exterior algebras. An exterior algebra may also be defined for more general objects, viz. for unitary modules $ M $ | ||
+ | over a commutative ring $ A $ | ||
+ | with identity [[#References|[4]]]. The $ r $- | ||
+ | th exterior power $ \wedge ^ {r} M $, | ||
+ | $ r > 0 $, | ||
+ | of a module $ M $ | ||
+ | is defined as the quotient module of the $ r $- | ||
+ | th tensor power of this module by the submodule generated by the elements of the form $ x _ {1} \otimes \dots \otimes x _ {r} $, | ||
+ | where $ x _ {i} \in M $ | ||
+ | and $ x _ {j} = x _ {k} $ | ||
+ | for certain $ j \neq k $. | ||
+ | The exterior algebra for $ M $ | ||
+ | is defined as the direct sum $ \wedge M = \oplus _ {r \geq 0 } \wedge ^ {r} M $, | ||
+ | where $ \wedge ^ {0} M = A $, | ||
+ | with the naturally introduced multiplication. In the case of a finite-dimensional vector space this definition and the original definition are identical. The exterior algebra of a module is employed in the theory of modules over a principal ideal ring [[#References|[5]]]. | ||
+ | |||
+ | The Grassmann (or Plücker) coordinates of an $ r $- | ||
+ | dimensional subspace $ L $ | ||
+ | in an $ n $- | ||
+ | dimensional space $ V $ | ||
+ | over $ k $ | ||
+ | are defined as the coordinates of the $ r $- | ||
+ | vector in $ V $ | ||
+ | corresponding to $ L $, | ||
+ | which is defined up to proportionality. Grassmann coordinates may be used to naturally imbed the set of all $ r $- | ||
+ | dimensional subspaces in $ V $ | ||
+ | into the projective space of dimension $ ( _ {r} ^ {n} ) - 1 $, | ||
+ | where it forms an algebraic variety (called the [[Grassmann manifold|Grassmann manifold]]). Thus one gets several important examples of projective algebraic varieties [[#References|[6]]]. | ||
Exterior algebras are employed in the calculus of exterior differential forms (cf. [[Differential form|Differential form]]) as one of the basic formalisms in differential geometry [[#References|[7]]], [[#References|[8]]]. Many important results in algebraic topology are formulated in terms of exterior algebras. | Exterior algebras are employed in the calculus of exterior differential forms (cf. [[Differential form|Differential form]]) as one of the basic formalisms in differential geometry [[#References|[7]]], [[#References|[8]]]. Many important results in algebraic topology are formulated in terms of exterior algebras. | ||
− | E.g., if | + | E.g., if $ G $ |
+ | is a finite-dimensional $ H $- | ||
+ | space (e.g. a Lie group), the cohomology algebra $ H ^ {*} ( G, k) $ | ||
+ | of $ G $ | ||
+ | with coefficients in a field $ k $ | ||
+ | of characteristic zero is an exterior algebra with odd-degree generators. If $ G $ | ||
+ | is a simply-connected compact Lie group, then the ring $ K ^ {*} ( G) $, | ||
+ | studied in [[K-theory| $ K $- | ||
+ | theory]], is also an exterior algebra (over the ring of integers). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Grassmann, "Gesammelte mathematische und physikalische Werke" , '''1''' , Teubner (1894–1896) pp. Chapt. 1; 2 {{MR|0245419}} {{ZBL|42.0015.01}} {{ZBL|35.0015.01}} {{ZBL|33.0026.01}} {{ZBL|27.0017.01}} {{ZBL|25.0027.03}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian) {{MR|}} {{ZBL|0396.15001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.A. Kaluzhnin, "Introduction to general algebra" , Moscow (1973) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Multilinear algebra" , Addison-Wesley (1966) pp. Chapt. 2 (Translated from French) {{MR|0205211}} {{MR|0205210}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) {{MR|2333539}} {{MR|2327161}} {{MR|2325344}} {{MR|2284892}} {{MR|2272929}} {{MR|0928386}} {{MR|0896478}} {{MR|0782297}} {{MR|0782296}} {{MR|0722608}} {{MR|0682756}} {{MR|0643362}} {{MR|0647314}} {{MR|0610795}} {{MR|0583191}} {{MR|0354207}} {{MR|0360549}} {{MR|0237342}} {{MR|0205211}} {{MR|0205210}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , '''1–3''' , Cambridge Univ. Press (1947–1954) {{MR|1288307}} {{MR|1288306}} {{MR|1288305}} {{MR|0061846}} {{MR|0048065}} {{MR|0028055}} {{ZBL|0796.14002}} {{ZBL|0796.14003}} {{ZBL|0796.14001}} {{ZBL|0157.27502}} {{ZBL|0157.27501}} {{ZBL|0055.38705}} {{ZBL|0048.14502}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.P. Finikov, "Cartan's method of exterior forms in differential geometry" , '''1–3''' , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) {{MR|0193578}} {{ZBL|0129.13102}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Grassmann, "Gesammelte mathematische und physikalische Werke" , '''1''' , Teubner (1894–1896) pp. Chapt. 1; 2 {{MR|0245419}} {{ZBL|42.0015.01}} {{ZBL|35.0015.01}} {{ZBL|33.0026.01}} {{ZBL|27.0017.01}} {{ZBL|25.0027.03}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian) {{MR|}} {{ZBL|0396.15001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.A. Kaluzhnin, "Introduction to general algebra" , Moscow (1973) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Multilinear algebra" , Addison-Wesley (1966) pp. Chapt. 2 (Translated from French) {{MR|0205211}} {{MR|0205210}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) {{MR|2333539}} {{MR|2327161}} {{MR|2325344}} {{MR|2284892}} {{MR|2272929}} {{MR|0928386}} {{MR|0896478}} {{MR|0782297}} {{MR|0782296}} {{MR|0722608}} {{MR|0682756}} {{MR|0643362}} {{MR|0647314}} {{MR|0610795}} {{MR|0583191}} {{MR|0354207}} {{MR|0360549}} {{MR|0237342}} {{MR|0205211}} {{MR|0205210}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , '''1–3''' , Cambridge Univ. Press (1947–1954) {{MR|1288307}} {{MR|1288306}} {{MR|1288305}} {{MR|0061846}} {{MR|0048065}} {{MR|0028055}} {{ZBL|0796.14002}} {{ZBL|0796.14003}} {{ZBL|0796.14001}} {{ZBL|0157.27502}} {{ZBL|0157.27501}} {{ZBL|0055.38705}} {{ZBL|0048.14502}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.P. Finikov, "Cartan's method of exterior forms in differential geometry" , '''1–3''' , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) {{MR|0193578}} {{ZBL|0129.13102}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Anticommuting variables ( | + | Anticommuting variables ( $ x _ {i} x _ {j} = - x _ {j} x _ {i} $, |
+ | $ x _ {i} ^ {2} = 0 $) | ||
+ | are sometimes called Grassmann variables; especially in the context of superalgebras, super-manifolds, etc. (cf. [[Super-manifold|Super-manifold]]; [[Superalgebra|Superalgebra]]). In addition the phrase fermionic variables occurs; especially in theoretical physics. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Chevalley, "The construction and study of certain important algebras" , Math. Soc. Japan (1955) {{MR|0072867}} {{ZBL|}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Chevalley, "The construction and study of certain important algebras" , Math. Soc. Japan (1955) {{MR|0072867}} {{ZBL|}} </TD></TR></table> |
Latest revision as of 19:38, 5 June 2020
Grassmann algebra, of a vector space $ V $
over a field $ k $
An associative algebra over $ k $, the operation in which is denoted by the symbol $ \wedge $, with generating elements $ 1, e _ {1} \dots e _ {n} $ where $ e _ {1} \dots e _ {n} $ is a basis of $ V $, and with defining relations
$$ e _ {i} \wedge e _ {j} = - e _ {j} \wedge e _ {i} \ \ ( i, j = 1 \dots n),\ \ e _ {i} \wedge e _ {i} = 0, $$
$$ 1 \wedge e _ {i} = e _ {i} \wedge 1 = e _ {i} \ ( i = 1 \dots n),\ 1 \wedge 1 = 1. $$
The exterior algebra does not depend on the choice of the basis and is denoted by $ \wedge V $. The subspace $ \wedge ^ {r} V $( $ r = 0, 1 , . . . $) in $ \wedge V $ generated by the elements of the form $ e _ {i _ {1} } \wedge \dots \wedge e _ {i _ {r} } $ is said to be the $ r $- th exterior power of the space $ V $. The following equalities are valid: $ \mathop{\rm dim} \wedge ^ {r} V = ( _ {r} ^ {n} ) = C _ {n} ^ {r} $, $ r = 0 \dots n $, $ \wedge ^ {r} V = 0 $, $ r > n $. In addition, $ v \wedge u = (- 1) ^ {rs} u \wedge v $ if $ u \in \wedge ^ {r} V $, $ v \in \wedge ^ {s} V $. The elements of the space $ \wedge ^ {r} V $ are said to be $ r $- vectors; they may also be regarded as skew-symmetric $ r $- times contravariant tensors in $ V $( cf. Exterior product).
$ r $- vectors are closely connected with $ r $- dimensional subspaces in $ V $: Linearly independent systems of vectors $ x _ {1} \dots x _ {r} $ and $ y _ {1} \dots y _ {r} $ of $ V $ generate the same subspace if and only if the $ r $- vectors $ x _ {1} \wedge \dots \wedge x _ {r} $ and $ y _ {1} \wedge \dots \wedge y _ {r} $ are proportional. This fact served as one of the starting points in the studies of H. Grassmann [1], who introduced exterior algebras as the algebraic apparatus to describe the generation of multi-dimensional subspaces by one-dimensional subspaces. The theory of determinants is readily constructed with the aid of exterior algebras. An exterior algebra may also be defined for more general objects, viz. for unitary modules $ M $ over a commutative ring $ A $ with identity [4]. The $ r $- th exterior power $ \wedge ^ {r} M $, $ r > 0 $, of a module $ M $ is defined as the quotient module of the $ r $- th tensor power of this module by the submodule generated by the elements of the form $ x _ {1} \otimes \dots \otimes x _ {r} $, where $ x _ {i} \in M $ and $ x _ {j} = x _ {k} $ for certain $ j \neq k $. The exterior algebra for $ M $ is defined as the direct sum $ \wedge M = \oplus _ {r \geq 0 } \wedge ^ {r} M $, where $ \wedge ^ {0} M = A $, with the naturally introduced multiplication. In the case of a finite-dimensional vector space this definition and the original definition are identical. The exterior algebra of a module is employed in the theory of modules over a principal ideal ring [5].
The Grassmann (or Plücker) coordinates of an $ r $- dimensional subspace $ L $ in an $ n $- dimensional space $ V $ over $ k $ are defined as the coordinates of the $ r $- vector in $ V $ corresponding to $ L $, which is defined up to proportionality. Grassmann coordinates may be used to naturally imbed the set of all $ r $- dimensional subspaces in $ V $ into the projective space of dimension $ ( _ {r} ^ {n} ) - 1 $, where it forms an algebraic variety (called the Grassmann manifold). Thus one gets several important examples of projective algebraic varieties [6].
Exterior algebras are employed in the calculus of exterior differential forms (cf. Differential form) as one of the basic formalisms in differential geometry [7], [8]. Many important results in algebraic topology are formulated in terms of exterior algebras.
E.g., if $ G $ is a finite-dimensional $ H $- space (e.g. a Lie group), the cohomology algebra $ H ^ {*} ( G, k) $ of $ G $ with coefficients in a field $ k $ of characteristic zero is an exterior algebra with odd-degree generators. If $ G $ is a simply-connected compact Lie group, then the ring $ K ^ {*} ( G) $, studied in $ K $- theory, is also an exterior algebra (over the ring of integers).
References
[1] | H. Grassmann, "Gesammelte mathematische und physikalische Werke" , 1 , Teubner (1894–1896) pp. Chapt. 1; 2 MR0245419 Zbl 42.0015.01 Zbl 35.0015.01 Zbl 33.0026.01 Zbl 27.0017.01 Zbl 25.0027.03 |
[2] | A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian) Zbl 0396.15001 |
[3] | L.A. Kaluzhnin, "Introduction to general algebra" , Moscow (1973) (In Russian) |
[4] | N. Bourbaki, "Elements of mathematics. Algebra: Multilinear algebra" , Addison-Wesley (1966) pp. Chapt. 2 (Translated from French) MR0205211 MR0205210 |
[5] | N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) MR2333539 MR2327161 MR2325344 MR2284892 MR2272929 MR0928386 MR0896478 MR0782297 MR0782296 MR0722608 MR0682756 MR0643362 MR0647314 MR0610795 MR0583191 MR0354207 MR0360549 MR0237342 MR0205211 MR0205210 |
[6] | W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , 1–3 , Cambridge Univ. Press (1947–1954) MR1288307 MR1288306 MR1288305 MR0061846 MR0048065 MR0028055 Zbl 0796.14002 Zbl 0796.14003 Zbl 0796.14001 Zbl 0157.27502 Zbl 0157.27501 Zbl 0055.38705 Zbl 0048.14502 |
[7] | S.P. Finikov, "Cartan's method of exterior forms in differential geometry" , 1–3 , Moscow-Leningrad (1948) (In Russian) |
[8] | S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) MR0193578 Zbl 0129.13102 |
Comments
Anticommuting variables ( $ x _ {i} x _ {j} = - x _ {j} x _ {i} $, $ x _ {i} ^ {2} = 0 $) are sometimes called Grassmann variables; especially in the context of superalgebras, super-manifolds, etc. (cf. Super-manifold; Superalgebra). In addition the phrase fermionic variables occurs; especially in theoretical physics.
References
[a1] | C. Chevalley, "The construction and study of certain important algebras" , Math. Soc. Japan (1955) MR0072867 |
Exterior algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Exterior_algebra&oldid=46887