Namespaces
Variants
Actions

Difference between revisions of "Endomorphism ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356101.png" /> consisting of all morphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356102.png" /> into itself, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356103.png" /> is an object in some [[Additive category|additive category]]. The multiplication in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356104.png" /> is composition of morphisms, and addition is the addition of morphisms defined by the axioms of the additive category. The identity morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356105.png" /> is the unit element of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356106.png" />. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356107.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356108.png" /> is invertible if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356109.png" /> is an automorphism of the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561010.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561012.png" /> are objects of an additive category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561013.png" />, then the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561014.png" /> has the natural structure of a right module over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561015.png" /> and of a left module over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561016.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561017.png" /> be a covariant (or contravariant) additive functor from an additive category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561018.png" /> into an additive category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561019.png" />. Then for any object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561020.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561021.png" /> the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561022.png" /> induces a natural homomorphism (or anti-homomorphism) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561023.png" />.
+
<!--
 +
e0356101.png
 +
$#A+1 = 63 n = 0
 +
$#C+1 = 63 : ~/encyclopedia/old_files/data/E035/E.0305610 Endomorphism ring
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561024.png" /> be the category of modules over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561025.png" />. For an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561026.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561027.png" /> the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561028.png" /> consists of all endomorphisms of the Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561029.png" /> that commute with multiplication by elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561030.png" />. The sum of two endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561032.png" /> is defined by the formula
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561033.png" /></td> </tr></table>
+
The associative ring  $  \mathop{\rm End}  A = \mathop{\rm Hom} ( A , A ) $
 +
consisting of all morphisms of  $  A $
 +
into itself, where  $  A $
 +
is an object in some [[Additive category|additive category]]. The multiplication in  $  \mathop{\rm End}  A $
 +
is composition of morphisms, and addition is the addition of morphisms defined by the axioms of the additive category. The identity morphism  $  1 _ {A} $
 +
is the unit element of the ring  $  \mathop{\rm End}  A $.
 +
An element  $  \phi $
 +
in  $  \mathop{\rm End}  A $
 +
is invertible if and only if  $  \phi $
 +
is an automorphism of the object  $  A $.
 +
If  $  A $
 +
and  $  B $
 +
are objects of an additive category  $  C $,
 +
then the group  $  \mathop{\rm Hom} ( A , B ) $
 +
has the natural structure of a right module over  $  \mathop{\rm End}  A $
 +
and of a left module over  $  \mathop{\rm End}  B $.
 +
Let  $  T : C \rightarrow C _ {1} $
 +
be a covariant (or contravariant) additive functor from an additive category  $  C $
 +
into an additive category  $  C _ {1} $.
 +
Then for any object  $  A $
 +
in  $  C $
 +
the functor  $  T $
 +
induces a natural homomorphism (or anti-homomorphism)  $  \mathop{\rm End}  A \rightarrow  \mathop{\rm End}  T ( A) $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561034.png" /> is commutative, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561035.png" /> has the natural structure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561036.png" />-algebra. Many properties of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561037.png" /> can be characterized in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561038.png" />. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561039.png" /> is an irreducible module if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561040.png" /> is a skew-field.
+
Let  $  C $
 +
be the category of modules over a ring  $  R $.
 +
For an $  R $-
 +
module  $  A $
 +
the ring  $  \mathop{\rm End}  A $
 +
consists of all endomorphisms of the Abelian group  $  A $
 +
that commute with multiplication by elements of  $  R $.  
 +
The sum of two endomorphism  $  \phi $
 +
and $  \psi $
 +
is defined by the formula
  
An arbitrary homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561041.png" /> of an associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561042.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561043.png" /> is called a representation of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561044.png" /> (by endomorphisms of the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561045.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561046.png" /> has a unit element, then one imposes the additional condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561047.png" />. Any associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561048.png" /> has a faithful representation in the endomorphism ring of a certain Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561049.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561050.png" />, moreover, has a unit element, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561051.png" /> can be chosen as the additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561052.png" /> on which the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561053.png" /> act by left multiplication. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561054.png" /> has no unit element and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561055.png" /> is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561056.png" /> by adjoining a unit to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561057.png" /> externally, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561058.png" /> can be taken to be the additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561059.png" />.
+
$$
 +
( \phi + \psi ) ( a= \phi ( a) +
 +
\psi ( a) ,a \in A .
 +
$$
  
In the case of an Abelian variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561060.png" /> one considers, apart from the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561061.png" />, which is a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561062.png" />-module, the algebra of endomorphisms (algebra of complex multiplications) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561063.png" />.
+
If  $  R $
 +
is commutative, then  $  \mathop{\rm End}  A $
 +
has the natural structure of an  $  R $-
 +
algebra. Many properties of the module  $  A $
 +
can be characterized in terms of  $  \mathop{\rm End}  A $.
 +
For example,  $  A $
 +
is an irreducible module if and only if  $  \mathop{\rm End}  A $
 +
is a skew-field.
 +
 
 +
An arbitrary homomorphism  $  \pi $
 +
of an associative ring  $  K $
 +
into  $  \mathop{\rm End}  A $
 +
is called a representation of the ring  $  K $(
 +
by endomorphisms of the object  $  A $).
 +
If  $  K $
 +
has a unit element, then one imposes the additional condition  $  \pi ( 1) = 1 _ {A} $.
 +
Any associative ring  $  K $
 +
has a faithful representation in the endomorphism ring of a certain Abelian group  $  A $.
 +
If  $  K $,
 +
moreover, has a unit element, then  $  A $
 +
can be chosen as the additive group of  $  K $
 +
on which the elements of  $  K $
 +
act by left multiplication. If  $  K $
 +
has no unit element and  $  K _ {1} $
 +
is obtained from  $  K $
 +
by adjoining a unit to  $  K $
 +
externally, then  $  A $
 +
can be taken to be the additive group of  $  K _ {1} $.
 +
 
 +
In the case of an Abelian variety $  X $
 +
one considers, apart from the ring $  \mathop{\rm End}  X $,  
 +
which is a finitely-generated $  \mathbf Z $-
 +
module, the algebra of endomorphisms (algebra of complex multiplications) $  \mathop{\rm End}  ^ {0}  X = \mathbf Q \otimes _ {\mathbf Z }  \mathop{\rm End}  X $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1–2''' , Springer  (1973–1976)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  D. Mumford,  "Abelian varieties" , Oxford Univ. Press  (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.T. Markov,  A.V. Mikhalev,  L.A. Skornyakov,  A.A. Tugaubaev,  "Endomorphism rings of modules and lattices of submodules"  ''J. Soviet Math.'' , '''31''' :  3  (1985)  pp. 3005–3051  ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''21'''  (1983)  pp. 183–254</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1–2''' , Springer  (1973–1976)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  D. Mumford,  "Abelian varieties" , Oxford Univ. Press  (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.T. Markov,  A.V. Mikhalev,  L.A. Skornyakov,  A.A. Tugaubaev,  "Endomorphism rings of modules and lattices of submodules"  ''J. Soviet Math.'' , '''31''' :  3  (1985)  pp. 3005–3051  ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''21'''  (1983)  pp. 183–254</TD></TR></table>

Latest revision as of 19:37, 5 June 2020


The associative ring $ \mathop{\rm End} A = \mathop{\rm Hom} ( A , A ) $ consisting of all morphisms of $ A $ into itself, where $ A $ is an object in some additive category. The multiplication in $ \mathop{\rm End} A $ is composition of morphisms, and addition is the addition of morphisms defined by the axioms of the additive category. The identity morphism $ 1 _ {A} $ is the unit element of the ring $ \mathop{\rm End} A $. An element $ \phi $ in $ \mathop{\rm End} A $ is invertible if and only if $ \phi $ is an automorphism of the object $ A $. If $ A $ and $ B $ are objects of an additive category $ C $, then the group $ \mathop{\rm Hom} ( A , B ) $ has the natural structure of a right module over $ \mathop{\rm End} A $ and of a left module over $ \mathop{\rm End} B $. Let $ T : C \rightarrow C _ {1} $ be a covariant (or contravariant) additive functor from an additive category $ C $ into an additive category $ C _ {1} $. Then for any object $ A $ in $ C $ the functor $ T $ induces a natural homomorphism (or anti-homomorphism) $ \mathop{\rm End} A \rightarrow \mathop{\rm End} T ( A) $.

Let $ C $ be the category of modules over a ring $ R $. For an $ R $- module $ A $ the ring $ \mathop{\rm End} A $ consists of all endomorphisms of the Abelian group $ A $ that commute with multiplication by elements of $ R $. The sum of two endomorphism $ \phi $ and $ \psi $ is defined by the formula

$$ ( \phi + \psi ) ( a) = \phi ( a) + \psi ( a) ,\ a \in A . $$

If $ R $ is commutative, then $ \mathop{\rm End} A $ has the natural structure of an $ R $- algebra. Many properties of the module $ A $ can be characterized in terms of $ \mathop{\rm End} A $. For example, $ A $ is an irreducible module if and only if $ \mathop{\rm End} A $ is a skew-field.

An arbitrary homomorphism $ \pi $ of an associative ring $ K $ into $ \mathop{\rm End} A $ is called a representation of the ring $ K $( by endomorphisms of the object $ A $). If $ K $ has a unit element, then one imposes the additional condition $ \pi ( 1) = 1 _ {A} $. Any associative ring $ K $ has a faithful representation in the endomorphism ring of a certain Abelian group $ A $. If $ K $, moreover, has a unit element, then $ A $ can be chosen as the additive group of $ K $ on which the elements of $ K $ act by left multiplication. If $ K $ has no unit element and $ K _ {1} $ is obtained from $ K $ by adjoining a unit to $ K $ externally, then $ A $ can be taken to be the additive group of $ K _ {1} $.

In the case of an Abelian variety $ X $ one considers, apart from the ring $ \mathop{\rm End} X $, which is a finitely-generated $ \mathbf Z $- module, the algebra of endomorphisms (algebra of complex multiplications) $ \mathop{\rm End} ^ {0} X = \mathbf Q \otimes _ {\mathbf Z } \mathop{\rm End} X $.

References

[1] C. Faith, "Algebra: rings, modules, and categories" , 1–2 , Springer (1973–1976)
[2] D. Mumford, "Abelian varieties" , Oxford Univ. Press (1974)
[3] V.T. Markov, A.V. Mikhalev, L.A. Skornyakov, A.A. Tugaubaev, "Endomorphism rings of modules and lattices of submodules" J. Soviet Math. , 31 : 3 (1985) pp. 3005–3051 Itogi Nauk. i Tekhn. Algebra. Topol. Geom. , 21 (1983) pp. 183–254
How to Cite This Entry:
Endomorphism ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Endomorphism_ring&oldid=46821
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article