Namespaces
Variants
Actions

Difference between revisions of "Eigen oscillation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
e0351401.png
 +
$#A+1 = 17 n = 0
 +
$#C+1 = 17 : ~/encyclopedia/old_files/data/E035/E.0305140 Eigen oscillation,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''free oscillation''
 
''free oscillation''
  
 
An oscillation occurring in a [[Dynamical system|dynamical system]] in the absence of an external action by perturbing it at the initial moment by an  "external action"  from a state of equilibrium. The nature of eigen oscillations is determined mainly by the internal forces determined by the physical structure of the system. The energy necessary for the movement enters the system from the  "external action"  at the initial moment of motion.
 
An oscillation occurring in a [[Dynamical system|dynamical system]] in the absence of an external action by perturbing it at the initial moment by an  "external action"  from a state of equilibrium. The nature of eigen oscillations is determined mainly by the internal forces determined by the physical structure of the system. The energy necessary for the movement enters the system from the  "external action"  at the initial moment of motion.
  
An example of eigen oscillations are the small oscillations of a conservative system with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e0351401.png" /> degrees of freedom around a state of stable equilibrium. The equations of motion have the form
+
An example of eigen oscillations are the small oscillations of a conservative system with $  n $
 +
degrees of freedom around a state of stable equilibrium. The equations of motion have the form
 +
 
 +
$$ \tag{1 }
 +
\sum _ { i= } 1 ^ { n }  ( a _ {si} \dot{q} dot _ {i} +
 +
c _ {si} q _ {i} )  =  0 ,\ \
 +
s = 1 \dots n ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e0351402.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
where the  $  q _ {i} $
 +
are generalized coordinates and the  $  a _ {si} $,
 +
$  c _ {si} $
 +
are constant coefficients. The general solution of (1) consists of the sum of  $  n $
 +
harmonic oscillations:
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e0351403.png" /> are generalized coordinates and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e0351404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e0351405.png" /> are constant coefficients. The general solution of (1) consists of the sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e0351406.png" /> harmonic oscillations:
+
$$
 +
q _ {i}  = \sum _ { j= } 1 ^ { n }
 +
A _ {j} \Delta _ {i} ( k _ {j}  ^ {2} ) \
 +
\sin ( k _ {j} t + \beta _ {j} ) ,\ \
 +
i = 1 \dots n ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e0351407.png" /></td> </tr></table>
+
where  $  A _ {j} $,
 +
$  \beta _ {j} $
 +
are constants of integration,  $  k _ {j} $
 +
are eigen frequencies, i.e. roots of the frequency equation
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e0351408.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e0351409.png" /> are constants of integration, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e03514010.png" /> are eigen frequencies, i.e. roots of the frequency equation
+
$$ \tag{2 }
 +
\mathop{\rm det}  \left (
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e03514011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
\begin{array}{ccc}
 +
c _ {11} - a _ {11} k  ^ {2}  &\dots  &c _ {1n} - a _ {1n} k  ^ {2}  \\
 +
\dots  &\dots  &\dots  \\
 +
c _ {n1} - a _ {n1} k  ^ {2}  &\dots  &c _ {nn} - a _ {nn} k  ^ {2}  \\
 +
\end{array}
 +
\right ) =  0
 +
$$
  
(where it is assumed that there are no zero or multiple frequencies), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e03514012.png" /> is the minor corresponding to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e03514013.png" />-th column and last row of the determinant (2). The variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e03514014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e03514015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e03514016.png" /> are the amplitude, phase and initial phase of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035140/e03514017.png" />-th harmonic, respectively. It follows from this example that harmonic oscillations of the same frequency for all coordinates arise in phase or contra-phase, and the distribution of amplitudes of oscillations of a given eigen frequency in the coordinates is determined by the physical structure of the system.
+
(where it is assumed that there are no zero or multiple frequencies), and $  \Delta _ {i} ( k _ {j}  ^ {2} ) $
 +
is the minor corresponding to the $  i $-
 +
th column and last row of the determinant (2). The variables $  A _ {j} \Delta _ {i} ( k _ {j}  ^ {2} ) $,  
 +
$  k _ {j} t + \beta _ {j} $
 +
and $  \beta _ {j} $
 +
are the amplitude, phase and initial phase of the $  j $-
 +
th harmonic, respectively. It follows from this example that harmonic oscillations of the same frequency for all coordinates arise in phase or contra-phase, and the distribution of amplitudes of oscillations of a given eigen frequency in the coordinates is determined by the physical structure of the system.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Babakov,  "Oscillation theory" , Moscow  (1965)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.V. Butenin,  "The theory of oscillations" , Moscow  (1963)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S.P. Strelkov,  "Introduction to oscillation theory" , Moscow  (1964)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Andronov,  A.A. Vitt,  A.E. Khaikin,  "Theory of oscillators" , Pergamon  (1966)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Babakov,  "Oscillation theory" , Moscow  (1965)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.V. Butenin,  "The theory of oscillations" , Moscow  (1963)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S.P. Strelkov,  "Introduction to oscillation theory" , Moscow  (1964)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Andronov,  A.A. Vitt,  A.E. Khaikin,  "Theory of oscillators" , Pergamon  (1966)  (Translated from Russian)</TD></TR></table>

Revision as of 19:37, 5 June 2020


free oscillation

An oscillation occurring in a dynamical system in the absence of an external action by perturbing it at the initial moment by an "external action" from a state of equilibrium. The nature of eigen oscillations is determined mainly by the internal forces determined by the physical structure of the system. The energy necessary for the movement enters the system from the "external action" at the initial moment of motion.

An example of eigen oscillations are the small oscillations of a conservative system with $ n $ degrees of freedom around a state of stable equilibrium. The equations of motion have the form

$$ \tag{1 } \sum _ { i= } 1 ^ { n } ( a _ {si} \dot{q} dot _ {i} + c _ {si} q _ {i} ) = 0 ,\ \ s = 1 \dots n , $$

where the $ q _ {i} $ are generalized coordinates and the $ a _ {si} $, $ c _ {si} $ are constant coefficients. The general solution of (1) consists of the sum of $ n $ harmonic oscillations:

$$ q _ {i} = \sum _ { j= } 1 ^ { n } A _ {j} \Delta _ {i} ( k _ {j} ^ {2} ) \ \sin ( k _ {j} t + \beta _ {j} ) ,\ \ i = 1 \dots n , $$

where $ A _ {j} $, $ \beta _ {j} $ are constants of integration, $ k _ {j} $ are eigen frequencies, i.e. roots of the frequency equation

$$ \tag{2 } \mathop{\rm det} \left ( \begin{array}{ccc} c _ {11} - a _ {11} k ^ {2} &\dots &c _ {1n} - a _ {1n} k ^ {2} \\ \dots &\dots &\dots \\ c _ {n1} - a _ {n1} k ^ {2} &\dots &c _ {nn} - a _ {nn} k ^ {2} \\ \end{array} \right ) = 0 $$

(where it is assumed that there are no zero or multiple frequencies), and $ \Delta _ {i} ( k _ {j} ^ {2} ) $ is the minor corresponding to the $ i $- th column and last row of the determinant (2). The variables $ A _ {j} \Delta _ {i} ( k _ {j} ^ {2} ) $, $ k _ {j} t + \beta _ {j} $ and $ \beta _ {j} $ are the amplitude, phase and initial phase of the $ j $- th harmonic, respectively. It follows from this example that harmonic oscillations of the same frequency for all coordinates arise in phase or contra-phase, and the distribution of amplitudes of oscillations of a given eigen frequency in the coordinates is determined by the physical structure of the system.

References

[1] I.M. Babakov, "Oscillation theory" , Moscow (1965) (In Russian)
[2] N.V. Butenin, "The theory of oscillations" , Moscow (1963) (In Russian)
[3] S.P. Strelkov, "Introduction to oscillation theory" , Moscow (1964) (In Russian)
[4] A.A. Andronov, A.A. Vitt, A.E. Khaikin, "Theory of oscillators" , Pergamon (1966) (Translated from Russian)
How to Cite This Entry:
Eigen oscillation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Eigen_oscillation&oldid=46793
This article was adapted from an original article by N.V. Butenin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article