|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | d0339001.png |
| + | $#A+1 = 37 n = 0 |
| + | $#C+1 = 37 : ~/encyclopedia/old_files/data/D033/D.0303900 Double module |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| A synonym for [[Bimodule|bimodule]]. | | A synonym for [[Bimodule|bimodule]]. |
| | | |
− | A pair of subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d0339001.png" /> of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d0339002.png" /> which are members of the decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d0339003.png" /> into double cosets, i.e. in the decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d0339004.png" /> into non-intersecting subsets of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d0339005.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d0339006.png" /> is an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d0339007.png" />. A subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d0339008.png" /> is said to be a coset of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d0339009.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390010.png" /> or a double coset of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390011.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390012.png" />. Thus, the decomposition of a group of order 24 into double cosets modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390015.png" /> are its Sylow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390016.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390017.png" />-subgroups, consists of a single coset modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390018.png" />. Any double coset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390019.png" /> consists of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390020.png" /> cosets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390021.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390022.png" /> and, at the same time, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390023.png" /> cosets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390024.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390025.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390026.png" /> denotes the index of a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390027.png" /> in a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390028.png" />. | + | A pair of subgroups $ H, F $ |
| + | of a group $ G $ |
| + | which are members of the decomposition of $ G $ |
| + | into double cosets, i.e. in the decomposition of $ G $ |
| + | into non-intersecting subsets of the type $ H x F $, |
| + | where $ x $ |
| + | is an element of $ G $. |
| + | A subset $ H x F $ |
| + | is said to be a coset of the group $ G $ |
| + | modulo $ ( H , F ) $ |
| + | or a double coset of the group $ G $ |
| + | modulo $ ( H , F ) $. |
| + | Thus, the decomposition of a group of order 24 into double cosets modulo $ ( H , F ) $, |
| + | where $ H $ |
| + | and $ F $ |
| + | are its Sylow $ 2 $- |
| + | and $ 3 $- |
| + | subgroups, consists of a single coset modulo $ ( H , F ) $. |
| + | Any double coset $ H x F $ |
| + | consists of $ | H: H \cap xF x ^ {-} 1 | $ |
| + | cosets of $ G $ |
| + | by $ F $ |
| + | and, at the same time, of $ | F: F \cap x ^ {-} 1 Hx | $ |
| + | cosets of $ G $ |
| + | by $ H $, |
| + | where $ | U: V | $ |
| + | denotes the index of a subgroup $ V $ |
| + | in a group $ U $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Hall, "The theory of groups" , Macmillan (1959)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Hall, "The theory of groups" , Macmillan (1959)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | The phrase "double module" in the setting of 2) is obsolete. One uses instead the phrase "double cosetdouble coset" . The double cosets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390029.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390030.png" /> coincide with the orbits of the direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390031.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390032.png" />, acting by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390036.png" />. (See also [[Orbit|Orbit]]). The set of these double cosets is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033900/d03390037.png" />. | + | The phrase "double module" in the setting of 2) is obsolete. One uses instead the phrase "double cosetdouble coset" . The double cosets of $ G $ |
| + | modulo $ ( H , F ) $ |
| + | coincide with the orbits of the direct product $ H \times F $ |
| + | in $ G $, |
| + | acting by $ ( h , f ) g = h g f ^ { - 1 } $, |
| + | $ h \in H $, |
| + | $ f \in F $, |
| + | $ g \in G $. |
| + | (See also [[Orbit|Orbit]]). The set of these double cosets is denoted by $ H \setminus G / F $. |
A synonym for bimodule.
A pair of subgroups $ H, F $
of a group $ G $
which are members of the decomposition of $ G $
into double cosets, i.e. in the decomposition of $ G $
into non-intersecting subsets of the type $ H x F $,
where $ x $
is an element of $ G $.
A subset $ H x F $
is said to be a coset of the group $ G $
modulo $ ( H , F ) $
or a double coset of the group $ G $
modulo $ ( H , F ) $.
Thus, the decomposition of a group of order 24 into double cosets modulo $ ( H , F ) $,
where $ H $
and $ F $
are its Sylow $ 2 $-
and $ 3 $-
subgroups, consists of a single coset modulo $ ( H , F ) $.
Any double coset $ H x F $
consists of $ | H: H \cap xF x ^ {-} 1 | $
cosets of $ G $
by $ F $
and, at the same time, of $ | F: F \cap x ^ {-} 1 Hx | $
cosets of $ G $
by $ H $,
where $ | U: V | $
denotes the index of a subgroup $ V $
in a group $ U $.
References
[1] | P. Hall, "The theory of groups" , Macmillan (1959) |
The phrase "double module" in the setting of 2) is obsolete. One uses instead the phrase "double cosetdouble coset" . The double cosets of $ G $
modulo $ ( H , F ) $
coincide with the orbits of the direct product $ H \times F $
in $ G $,
acting by $ ( h , f ) g = h g f ^ { - 1 } $,
$ h \in H $,
$ f \in F $,
$ g \in G $.
(See also Orbit). The set of these double cosets is denoted by $ H \setminus G / F $.